Answer:
E = 2.7 x 10¹⁶ J
Explanation:
The release of energy associated with the mass can be calculated by Einstein's mass-energy relation, as follows:

where,
E = Energy Released = ?
m = mass of material reduced = 0.3 kg
c = speed of light = 3 x 10⁸ m/s
Therefore,

<u>E = 2.7 x 10¹⁶ J</u>
Answer:
a) 1.75s b) 17.2 m/s (down)
Explanation:
d1= 15m d2= 0m (because it hits ground)
a= -9.81 m/s^2 t=???
Equation
the triangle means change in so d2-d1
Δd= v1 * t + 1/2 * a * t^2
0m-15m= v1*t + 1/2 a t^2
-15 m= 0m/s*t (goes away) + 1/2* a *t^2
-15mx2= t^2
-15mx2/a= t^2
Square root (-30/-9.81m/s^2)
t=1.75 s
b) now v2!!
Im going to use v2= v1 + a*t
v2= 0m/s + -9.81 x 1.75s
v2 = -17.2 m/s or you can say 17.2 m/s down!!!
Answer:
A. 69.9m
Explanation:
Given parameters:
Initial velocity = 10.5m/s
Final velocity = 21.7m/s
Time = 4.34s
Unknown:
Distance traveled = ?
Solution:
Let us first find the acceleration of the car;
Acceleration =
v is final velocity
u is initial velocity
t is the time
Acceleration =
= 2.58m/s²
Distance traveled;
V² = U² + 2aS
21.7² = 10.5² + 2 x 2.58 x S
360.64 = 2 x 2.58 x S
S = 69.9m