The answer is a. a homogenous mixture
I think this is what you mean:
H H H H
H-C-C-C-C-H
H H H H
OR
<span>CH3CH2CH2CH3
</span>
If not, clarify and I will be happy to help.
Answer:
58.94 mL
Explanation:
V1 = 48.3 mL V2 = v mL
T1 = 22 degree celsius OR 295 k T2 = 87 degree celsius OR 360 k
We will use the gas equation:
PV = nRT
Since the Pressure (p) , number of moles (n) and the universal gas constant(R) are all constants in this given scenario,
we can say that
V / T = k , (where k is a constant)
Since this is the first case,
V1 / T1 = k --------------------(1)
For case 2:
Since we have the same constants, the equation will be the same
V / T = k (where k is the same constant from before)
V2 / T2 = k (Since this is the second case) ------------------(2)
From (1) and (2):
V1 / T1 = V2 / T2
Now, replacing the variables with the given values
48.3 / 295 = v / 360
v = 48.3*360 / 295
v = 58.94 mL
Therefore, the final volume of the gas is 58.94 mL
Answer:
Electrons are in "orbitals", regions of space where there is high probability of being found.
Explanation:
The Wave mechanical model of the atom does not restrict the electrons to certain energy levels only as in the Bohr's model, instead it describes a region around the nucleus called an orbital, where there is a high probability of finding an electron with a certain amount of energy.
Each energy level is composed of one or more orbitals and the distribution of electrons around the nucleus is determined by the number and kind of energy levels that are occupied.
1. Q=112.8 kJ
2. Q=5.01 kJ
<h3>Further explanation</h3>
The heat required for phase change :
Q = mLf
Lf=latent heat of fusion
- vaporization/condensation
Q = mLv
Lv=latent heat of vaporization
1.
m=50 g=0.05 kg
Lv (water) = 2256 kJ/kg

2.
m=15 g=0.015 kg
Lf for water = 334 kj/kg
