Answer: D. al of the above
Step-by-step explanation:
the numbers 1-7 are the significant figures, and if there is a zero but still three numbers ranging from 1-7, it counts
Answer:
That would be 19.6875 in decimal form.
Step-by-step explanation:
The given matrix equation is,
.
Multiplying the matrices with the scalars, the given equation becomes,
![\left[\begin{array}{cc}1.5x&9\\12&6\end{array}\right] +\left[\begin{array}{cc}y&4y\\3y&2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1.5x%269%5C%5C12%266%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dy%264y%5C%5C3y%262y%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dz%26z%5C%5C6z%262%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%20%20)
Adding the matrices,
![\left[\begin{array}{cc}1.5x+y&9+4y\\12+3y&6+2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1.5x%2By%269%2B4y%5C%5C12%2B3y%266%2B2y%5Cend%7Barray%7D%5Cright%5D%20%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dz%26z%5C%5C6z%262%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%20)
Matrix equality gives,

Solving the equations together,

We can see that the equations are not consistent.
There is no solution.
The length of the base is 32.6
3.3 + 3.3 = 6.6
Subtract 6.6 from 71.8 : 65.2
Divide that by 2 : 32.6
Answer:
0.36427
Step-by-step explanation:
Mean = λ = 18 messages per hour
P(X = x) = (e^-λ)(λ⁻ˣ)/x!
P(X ≤ x) = Σ (e^-λ)(λ⁻ˣ)/x! (Summation From 0 to x)
But the probability required is that the messages thay come in an hour is between 15 and 20, that is, P(15 < X < 20)
P(15 < X < 20) = P(X < 20) - P(X ≤ 15)
These probabilities will be evaluated using a cumulative frequency calculator.
P(X < 20) = 0.65092
P(X ≤ 15) = poissoncdf(18, 15) = 0.28665
P(15 < X < 20) = P(X < 20) - P(X ≤ 15) = 0.65092 - 0.28665 = 0.36427.
You can use the Poisson distribution calculator here
https://stattrek.com/online-calculator/poisson.aspx