Answer:
Fe
Explanation:
The electrical conductivity depends mainly on the type of chemical bonds between the atoms of a compound.
In the case of MgF2, FeCl3 and FeO3, these have the type of ionic bond. This means that in the atoms of the compound there is an electron transfer, to keep eight electrons in the outermost layer and thus resemble the electronic configuration of the inert gas closest to each of the two elements, due to this ions of opposite charges are formed that are held together by electrostatic forces. These types of compounds are good conductors of electricity, however, to have this property, they must be dissolved in water or molten.
In the case of Fe, however, the type of union between atoms is metallic. In this type of junction, valence electrons are quite free inside the metal, which makes it easy for them to move. For this reason, this compound will conduct electricity in a solid state.
Answer:
a0 = 2
a1= 9
a2= 6
a3= 8
Explanation:
The equation for the reaction is;
C3H7OH + O2 → CO2 + H2O
To balance the chemical equation we introduce coefficients;
Therefore the balanced chemical equation will be;
2C3H7OH + 9O2 → 6CO2 + 8H2O
Chemical equations are balanced to ensure the law of conservation of mass is obeyed, such that the mass of the reactants is equivalent to that of the products.
To calculate electronegativity, start by going online to find an electronegativity table. You can then assess the quality of a bond between 2 atoms by looking up their electronegativities on the table and subtracting the smaller one from the larger one. If the difference is less than 0.5, the bond is nonpolar covalent.
<u>Answer:</u> The equilibrium concentration of CO is 0.243 atm
<u>Explanation:</u>
We are given:
Initial partial pressure of carbon dioxide = 0.902 atm
As, carbon dioxide is present initially. This means that the reaction is proceeding backwards.
For the given chemical equation:

<u>Initial:</u> 0.902
<u>At eqllm:</u> 3x (0.902-3x)
The expression of
for above equation follows:

We are given:

Putting values in above equation, we get:

So, equilibrium concentration of CO = 3x = (3 × 0.0810) = 0.243atm[/tex]
Hence, the equilibrium concentration of CO is 0.243 atm
Answer:

Explanation:
- State of benzene at RTP = liquid
- State of chloroform at RTP = liquid
- Boiling point of benzene = 80.1 °C
- Boiling point of chloroform = 61.2 °C
Since, both of the chemicals are liquids, we can separate it by the process of distillation.
<u>Distillation:</u>
- is the process in which we separate two liquids on the basis of their difference in boiling points.
<u>How it works:</u>
Since chloroform has less boiling point, it will evaporate and collected first and benzene will follow it after sometime.
- Apparatus of distillation is in the attached file.
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)