Answer:
A) 12.57 m
B) 5 RPM
C) 3.142 m/s
Explanation:
A) Distance covered in 1 Revolution:
The formula that gives the relationship between the arc length or distance covered during circular motion to the angle subtended or the revolutions, is given as follows:
s = rθ
where,
s = distance covered = ?
r = radius of circle = 2 m
θ = Angle = 2π radians (For 1 complete Revolution)
Therefore,
s = (2 m)(2π radians)
<u>s = 12.57 m</u>
B) Angular Speed:
The formula for angular speed is given as:
ω = θ/t
where,
ω = angular speed = ?
θ = angular distance covered = 15 revolutions
t = time taken = 3 min
Therefore,
ω = 15 rev/3 min
<u>ω = 5 RPM</u>
C) Linear Speed:
The formula that gives the the linear speed of an object moving in a circular path is given as:
v = rω
where,
v = linear speed = ?
r = radius = 2 m
ω = Angular Speed in rad/s = (15 rev/min)(2π rad/1 rev)(1 min/60 s) = 1.571 rad/s
Therefore,
v = (2 m)(1.571 rad/s)
<u>v = 3.142 m/s</u>
Answer:
The distance of the object placed on the principal axis from the concave mirror.
Explanation:
In a concave mirror, the nature of the image formed formed by the object placed in front of the mirror depends on the position of the object placed in from of the mirror. It all depends on the distance between the mirror and the object placed on the principal axis.
The closer the object is to the lens, the more larger or magnified the image formed will be. For example an object placed between the focal point and the pole of a concave produces a much larger image than an object placed beyond the centre of curvature of such mirror.
Answer:
Restoring force of the spring is 50 N.
Explanation:
Given that,
Spring constant of the spring, k = 100 N/m
Stretching in the spring, x = 0.5 m
We need to find the restoring force of the spring. It can be calculated using Hooke's law as "the force on a spring varies directly with the distance that it is stretched".
F = 50 N
So, the restoring force of the spring is 50 N. Hence, this is the required solution.
The amount of diffraction of sound waves depends on the medium the sound wave travels to and the frequency. Diffraction happens as soon as it has been out of the source.