I think centripetal force ☺
Data:

n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>

Wire 2 → 2º Harmonic → n = 2







Wire 1 → 1º Harmonic or Fundamental rope → n = 1



If, We have:
V = 42L
Soon:



Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz
Sivilculture isis the art and science of managing forests for desired outcomes.
Answer:
sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j
Explanation:
We have given first vector which has length of 7 units and makes an angle of 30° with positive x-axis
So x component of the vector 
y component of the vector 
So vector will be 6.06i+3.5j
Now other vector of length of 7 units and makes an angle of 120° with positive x-axis
So x component of vector 
y component of the vector 
Now sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j
Answer:
Its diameter increases as it flows down from the pipe. Assuming laminar flow for the water, then Bernoulli's equation can be applied.
P1-P2 + (rho)g(h1 - h2) + 1/2(rho)(v1² - v2²) = 0
Explanation:
P1 = P2 = atmospheric pressure so, P1 - P2 = 0
h1 is greater than h2 so h1-h2 is positive. Rearranging the equation above 2{ (rho)g(h1-h2) + 1/2(rho)v1²}/rho = v2²
From the continuity equation for fluids
A1v1 = A2v2
v2 = A1v1/A2
Substituting into the equation above
(A1v1/A2)² = 2{ (rho)g(h1-h2) + 1/2(rho)v1²}/rho
Making A2² the subject of the formula,
A2² = (A1v1)²× rho/(2{ (rho)g(h1-h2) + 1/2(rho)v1²}
The denominator will be greater than the numerator and as a result the diameter of the flowing stream decreases.
Thank you for reading.