1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madreJ [45]
2 years ago
14

4. A ball is thrown vertically upward from the ground with a velocity of 30m/s. (a) how long will it take to rise to the highest

point? (b) How high does the ball rise? (c) How long after projection will the ball have a velocity of 10m/s upward? A velocity of 10m/s downward? (d) When is the displacement of the ball zero? (e) When is the magnitude of the ball’s velocity equal to half its velocity of projection? (f) When is the ball‘s displacement equal to half the maximum height to which it rises? (g) What is the magnitude and direction of the acceleration while the ball is moving upward? While moving downward? While at the highest point?​
Physics
1 answer:
yarga [219]2 years ago
3 0

All the answers are:

a) The time that will it take to rise to the highest point is 3.06 seconds.

b) The ball will rise to a height of 45.87 meters.

c) The time at which the ball will have a velocity of 10 m/s upward is 2.04 seconds.

The time when the ball has 10 m/s downward is 1.02 seconds.

d) The displacement of the ball will be zero at 6.12 seconds.

e) The time when the magnitude of the ball's velocity is equal to half its velocity of projection is 1.53 seconds.

f) The ball's displacement is equal to half the maximum height to which it rises after 0.90 seconds.

g) In each moment (upward and downward) the magnitude of the acceleration is the value of g (9.81 m/s²) and is a vector in the negative y-direction.

Let's calculate the values for each case.

a) At the highest point, the final velocity is 0, so we can use the following equation.  

v_{f}=v_{i}-gt (1)

Where:

  • v(i) is the initial velocity
  • v(f) is the final velocity
  • g is the acceleration due to gravity (9.81 m/s²)

We know that v(i) = 30 m/s.

0=30-9.81t

Solve it for t:

t=3.06\: s

Hence, the time is 3.06 s.

b) At the highest point, the final velocity is 0, so we can use the following equation.  

v_{f}^{2}=v_{i}^{2}-2gh (2)

0=v_{i}^{2}-2gh

We know that the initial velocity is 30 m/s.

0=30^{2}-2gh

Solving it for h we have:  

h=\frac{30^{2}}{2*9.81}

h=45.87 \: m

Then, the height is 45.87 m.

c) Using equation (1) we can find the time (t).

10=30-(9.81t)

So, the time elapsed to get 10 m/s is:

t_{upward}=2.04\: s

We know the upward time is equal to the downward time. So the time from v=10 m/s to v=0 m/s will be.

t_{upward}=2.04+t  

t=1.02\: s

This is the time when the ball has 10 m/s downward.          

Therefore, the time upward is 2.04 s, and the time downward is 1.02 s.

d) It will be when the ball returns to the ground.

t=2t_{upward}

t=2*3.06      

t=6.12\: s

The displacement will be zero after 6.12 s.  

e) Here we need to find the time when v(f) is 15 m/s

15=30-gt

t=\frac{15}{9.81}  

t=1.53\: s

The time when the v(f) is 15 m/s is 1.53 s.

f) Here, we need to find t when h = 45.87/2 m = 22.94 m

We can use the next equation:

[tex]h=v_{i}t-0.5gt^{2}/tex]

[tex]22.94=30t-0.5*9.81*t^{2}/tex]

Solving this quadratic equation, t will be:

[tex]t=0.90\: s/tex]

Hence, the ball's displacement is equal to half the maximum h, at 0.90 s.

g) In each moment the magnitude of the acceleration is the value of g (9.81 m/s²) and is a vector in the negative y-direction.

Learn more about vertical motion here:

brainly.com/question/13966860

I hope it helps you!

You might be interested in
A fluid flows through a pipe whose cross-sectional area changes from 2.00 m2 to 0.50 m2 . If the fluid’s speed in the wide part
borishaifa [10]

Answer:

v₂ = 7/ (0.5)= 14 m/s

Explanation:

Flow rate of the fluid

Flow rate is the amount of fluid that circulates through a section of the pipeline (pipe, pipeline, river, canal, ...) per unit of time.

The formula for calculated the flow rate is:

Q= v*A Formula (1)

Where :

Q is the Flow rate (m³/s)

A is the cross sectional area of a section of the pipe (m²)

v is the speed of the fluid in that section (m/s)

Equation of continuity

The volume flow rate Q for an incompressible fluid at any point along a pipe is the same as the volume flow rate at any other point along a pipe:

Q₁= Q₂

Data

A₁ = 2m² : cross sectional area 1

v₁ = 3.5 m/s : fluid speed through A₁

A₂ = 0.5 m² : cross sectional area 2

Calculation of the fluid speed through A₂

We aply the equation of continuity:

Q₁= Q₂

We aply the equation of Formula (1):

v₁*A₁= v₂*A₂

We replace data

(3.5)*(2)= v₂*(0.5)

7 = v₂*(0.5)

v₂ = 7/ (0.5)

v₂ =  14 m/s

4 0
2 years ago
When light is reflected by a mirror, the angle of incidence is always A. equal to the angle of reflection. B. less than the angl
ankoles [38]
When light is reflected by a mirror, the angle of incidence is always <span>A. equal to the angle of reflection. We know this by the Law of Reflection.</span>
6 0
3 years ago
Read 2 more answers
In what way could a random mutation provide an organism with an advantage? With a example please
saveliy_v [14]

Answer:

They are called beneficial mutations. They lead to new versions of proteins that help organisms adapt to changes in their environment. Beneficial mutations are essential for evolution to occur. They increase an organism's changes of surviving or reproducing, so they are likely to become more common over time.

Explanation:

7 0
2 years ago
In order to open the clam it catches, a seagull will drop the clam repeatedly onto a hard surface from high in the air until the
Vedmedyk [2.9K]

Answer:

2.2 s

Explanation:

Hi!

Let's consider the origin of the coordinate system at the ground, and consider that the clam starts with zero velocity, the equation of motion of the clam is given by

x(t) = 23.1 m - \frac{1}{2}(9.8 m/s^2) t^2

We are looking for a time t for which x(t) = 0

0 = 23.1 m - (4.9 m/s^2) t^2

Solving for t:

t = \sqrt{\frac{23.1}{4.9}} s = 2.17124 s

Rounding at the first decimal:

t = 2.2 s

4 0
3 years ago
Suppose a rectangular piece of aluminum has a length D, and its square cross section has the dimensions W XW, where D (W x W) to
Ludmilka [50]

Answer:

R₂ / R₁ = D / L

Explanation:

The resistance of a metal is

        R = ρ L / A

Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section

We apply this formal to both configurations

Small face measurements (W W)

The length is

         L = W

Area  

         A = W W = W²

        R₁ = ρ W / W² = ρ / W

Large face measurements (D L)

       Length L = D= 2W

       Area     A = W L

     R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L

The relationship is

    R₂ / R₁ = 2W²/L

6 0
3 years ago
Other questions:
  • The planet Krypton has a mass of 7.6 × 1023 kg and radius of 1.7 × 106 m. What is the acceleration of an object in free fall nea
    7·1 answer
  • Joe was asked to describe the movements the Earth makes as it rotates on its axis and revolves around the sur
    13·2 answers
  • True or false ,if false write right answer
    9·1 answer
  • A 1,300 kg wrecking ball hits the building at 1.07 m/s2.
    11·2 answers
  • The answer and why it's that one
    10·1 answer
  • A person walks at a speed of 6 km/h from point A to point B. If he improves his pace by 1.5 km/h, he will arrive 1 hour earlier.
    14·1 answer
  • 50 points question (Who is known as father of science)Albert Einstein​
    6·2 answers
  • Choose the +x-direction to point to the right. • Object 1 has a mass 1.66 kg and is moving to the right at 11.2 m/s. • Object 2
    7·1 answer
  • Why does the Rose advise Alice to go in the opposite direction?
    5·2 answers
  • You have a 12 volt battery and placed across a 6 ohm resistor, what will the current be?​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!