The question is oversimplified, and pretty sloppy.
Relative to the Earth . . .
The Moon is in an elliptical orbit around us, with a period of
27.32... days, and with the Earth at one focus of the ellipse.
Relative to the Sun . . .
The Moon is in an elliptical orbit around the Sun, with a period
of 365.24... days, and with the Sun at one focus of the ellipse,
and the Moon itself makes little dimples or squiggles in its orbit
on account of the gravitational influence of the nearby Earth.
I'm sorry if that seems complicated. You know that motion is
always relative to something, and the solar system is not simple.
Answer:
the correct answer is c, they will accelerate away from each other at different speeds. the 80kg will go faster due to less mass
Speed of car A is given as

now we need to convert it into SI units
1 miles = 1609 m
1 hour = 3600 s
now we have

now its distance from Bambi is given as

time taken by it to hit the Bambi



Now other car is moving at speed 50 mph
so its speed in SI unit will be


now its distance from Bambi is given as

as we know that 1 feet = 0.3048 m

now the time to hit the other car is


So Car B will hit the Bambi first
Answer:
acceleration, a = 9.8 m/s²
Explanation:
'A ball is dropped from the top of a building' indicates that the initial velocity of the ball is zero.
u = 0 m/s
After 2 seconds, velocity of the ball is 19.6 m/s.
t = 2s, v = 19.6 m/s
Using
v = u + at
19.6 = 0 + 2a
a = 9.8 m/s²