Do it as if you are writing a yes or no statement but have edge more towards the no side.
<u>Answer:</u>
Cannonball will be in flight before it hits the ground for 2.02 seconds
<u>Explanation:</u>
Initial height from ground = 20 meter.
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
In this the velocity of body in vertical direction = 0 m/s, acceleration = 9.8
, we need to calculate time when s = 20 meter.
Substituting

So it will take 2.02 seconds to reach ground.
Its average speed, pretending that it traveled at a constant speed, is
v = s / t
= 600 m
5 x 60 s
= 2 m/s
but to be a velocity it needs a direction as well as a speed.
( Sorry. Can’t find a division line to put between the 600 m and the 5 x 60 s )
Answer:
Ep = 0.6095 [J]
Explanation:
As defined in the problem statement, potential energy is defined as the product of mass by gravity by height. But first we must convert all the values given to measures of the international system (SI)
g = gravity = 10 [m/s^2]
h = elevation = 40 [ft] = 12.19 [m]
m = mass = 5 [g] = 0.005 [kg]
Ep = potential energy [J]
Ep = 0.005*10*12.19 = 0.6095 [J]
Answer:
p=mv=(813kg)(17)= 13,821 kg m\s