The chemical formular for water is H2O.
The H aspect of the formula stands for hydrogen gas and the subscript 2 which is attached to the H symbol signifies that two atoms of hydrogen are joined together, that is two atom of hydrogen are present.
The chemical formula of water indicates that, two atom of hydrogen react with one atom of oxygen to form one molecule of water.
In chemical formulae, subscripts are normally used to indicate the number of atoms that are present in a molecule.
Daniddmelo says it right there, don't know why he got reported.
The potential energy (PE) is mass x height x gravity. So it would be 25 kg x 4 m x 9.8 = 980 joules. The child starts out with 980 joules of potential energy. The kinetic energy (KE) is (1/2) x mass x velocity squared. KE = (1/2) x 25 kg x 5 m/s2 = 312.5 joules. So he ends with 312.5 joules of kinetic energy. The Energy lost to friction = PE - KE. 980- 312.5 = 667.5 joules of energy lost to friction.
Please don't just copy and paste, and thank you Dan cause you practically did it I just... elaborated more? I dunno.
Answer:
B
Explanation:
because kinetic energy is directly proportional to temperature so the hottor the object, the more kinetic energy.
A proton in a particle accelerator is traveling at a speed of 0.99c has a speed magnitude of 2.97 x 10⁸ m/s.
<h3>What is speed of proton?</h3>
The speed of a proton is the rate at which a proton is moving through a given space.
The given speed of the proton is 0.99c
where;
<h3>What is speed of light?</h3>
The speed of light in vacuum, commonly denoted c, is a universal physical constant that is important in many areas of physics.
The value of speed of light in a vacuum is given as 3 x 10⁸ m/s.
The speed of the proton is calculated as follows;
v = 0.99 x 3 x 10⁸ m/s.
v = 2.97 x 10⁸ m/s.
Thus, a proton in a particle accelerator is traveling at a speed of 0.99c has a speed magnitude of 2.97 x 10⁸ m/s.
Learn more about speed of proton here: brainly.com/question/14663642
#SPJ1
<span>If an inductor is connected across an ac source and suppose the frequency of the source is doubled, then t</span>he inductive reactance of the inductor is also doubled. The inductive reactance (XL) is the t<span>he opposition to current flowing through a coil in an AC circuit, the </span>impedance measured in Ohms and can be calculated with the following formula:
XL=2*pi*f*L,
where f is the frequency. So, if the frequency is doubled than also the inductive reactance is doubled.