Answer:
my kind sir/mamn its b
Step-by-step explanation: is just muti
Answer: 0.20
Step-by-step explanation:
Answer:
And 
The difference is that MSA takes incount the variation between the groups and the grand mean, and the MSW takes in count the variation within groups respect to the mean of each group
.
Step-by-step explanation:
Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".
The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"
If we assume that we have
groups and on each group from
we have
individuals on each group we can define the following formulas of variation:
And we have this property
The degrees of freedom for the numerator on this case is given by
where k represent the number of groups.
The degrees of freedom for the denominator on this case is given by
.
And the total degrees of freedom would be
We can find the
And 
The difference is that MSA takes incount the variation between the groups and the grand mean, and the MSW takes in count the variation within groups respect to the mean of each group
.
And the we can find the F statistic
Answer:
10:55
Step-by-step explanation:
9:15/10:05/10:55
Short Answer A
Comment
It's a good thing that the domain is confined or the graph is. That function is undefined if x < - 3
At exactly x = - 3, f(x) = 0 and that's your starting point.
So look what happens to this graph. If x = 0, f(0) = y = 3. So we are starting to see that as x get's larger so does f(x). The graph tells us that x = 0 is bigger than x = - 3.
Let's keep on plugging things in.
As x increases to 5, f(5) = 5. x = 5 is larger than x = 0, and f(5) > 3.
One more and then we'll start drawing conclusions. If x = 9 then f(9) = y = 6.
x = 9 is larger than x = 5. f(9) = 6 is just larger than f(5) which is 5
OK I think we should be ready to look at answers. There's nothing there that makes the answer anything but a. Let's find out what the problem is with the rest of the choices.
B
The problem with B is that as x increases, f(x) does not decrease. We didn't find one example of that. So B is wrong.
C
C has exactly the same problem as B.
D
The second statement in D is incorrect. As x increases f(x) never decreases. No example showed that.
The answer is A <<<< Answer.