Answer:
In thermodynamics, the Joule–Thomson effect describes the temperature change of a real gas or liquid when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. This procedure is called a throttling process or Joule–Thomson process
It is highly hazardous, it is radioactive
<span>CH4 + 4 Cl2 → CCl4 + 4 HCl
(4.00 mol CH4) x (1/1) x (0.70) = 2.80 mol CCl4
(4.00 mol CH4) x (4/1) x (0.70) = 11.2 mol HCl
CCl4 + 2 HF → CCl2F2 + 2 HCl
(2.80 mol CCl4) x (2/1) x (0.70) = 3.92 mol HCl
11.2 mol + 3.92 mol = 15.1 mol HCl from both steps</span>
Answer:
13mL
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
From the balanced equation above, we obtained the following data:
Mole ratio of the acid (nA) = 1
Mole ratio of the base (nB) = 1
Step 2:
Data obtained from the question.
This includes the following:
Molarity of the acid (Ma) = 6M
Volume of the acid (Va) =?
Volume of the base (Vb) = 39mL
Molarity of the base (Mb) = 2M
Step 3:
Determination of the volume of the acid.
Using the equation:
MaVa/MbVb = nA/nB, the volume of the acid can be obtained as follow:
MaVa/MbVb = nA/nB
6 x Va / 2 x 39 = 1/1
Cross multiply to express in linear form
6 x Va = 2 x 39
Divide both side by 6
Va = (2 x 39)/6
Va = 13mL
Therefore, the volume of the acid (HNO3) needed for the reaction is 13mL
Carrying capacity, D
Emigration, C
Limiting factor, A
Population dynamics, B