Answer:
The law of conservation of mass
Explanation:
A chemical equation is an expression of the net composition change associated with a chemical reaction. It shows how a certain amount of reactants yields a certain amount of products. Both of these amounts are measured in moles. Chemical equations often contain information about the state of the reactants: solid, liquid, gas, or aqueous. In addition, they always adhere to the law of conservation of mass, which holds that matter can change form, but cannot be created or destroyed.
Answer:
- x-intercept =

- y-intercept =

- Slope =

Explanation:
Please check the graph attached.
<span>The answer is Gaseous metals</span>
Answer:
- Total Pressure = 1.019 atm
Explanation:
To solve this problem we use PV=nRT for both gases in their containers, in order to <u>calculate the moles of each one</u>:
645 Torr ⇒ 645 /760 = 0.85 atm
25°C ⇒ 25 + 273.16 = 298.16 K
0.85 atm * 1.40 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ *298.16 K
n = 0.0487 mol O₂
1.13 atm * 0.751 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ *298.16 K
n = 0.0347 mol N₂
Now we can <u>calculate the partial pressure for each gas in the new container</u>, because the number of moles did not change:
P(O₂) * 2.00 L = 0.0487 mol O₂ * 0.082 atm·L·mol⁻¹·K⁻¹ *298.16 K
P(O₂) = 0.595 atm
P(N₂) * 2.00 L = 0.0347 mol N₂ * 0.082 atm·L·mol⁻¹·K⁻¹ *298.16 K
P(N₂) = 0.424 atm
Finally we add the partial pressures of all gases to <u>calculate the total pressure</u>:
- Pt = 0.595 atm+ 0.424 atm = 1.019 atm