From the ones that you are showing me <span>the more positive the potential the more likely: </span>
<span>Fe+3 + e- ---> Fe+2
I hope this is something very useful</span>
Answer:

Explanation:
Hello there!
In this case, according to the given question about stoichiometry, it is possible for us to calculate the required moles of water that will be produced by 12 grams of hydrogen, by using the molar mass of this reactant (2.02 g/mol as it is diatomic) and the 2:2 mole ratio in the chemical equation by solving the following setup:

Regards!
Answer:
The Kc of this reaction is 311.97
Explanation:
Step 1: Data given
Kp = 0.174
Temperature = 243 °C
Step 2: The balanced equation
N2(g) + 3H2(g) ⇌ 2NH3(g)
Step 3: Calculate Kc
Kp = Kc *(RT)^Δn
⇒ with Kp = 0.174
⇒ with Kc = TO BE DETERMINED
⇒ with R = the gas constant = 0.08206 Latm/Kmol
⇒ with T = the temperature = 243 °C = 516 K
⇒ with Δn = number of moles products - moles reactants 2 – (1 + 3) = -2
0.174 = Kc (0.08206*516)^-2
Kc = 311.97
The Kc of this reaction is 311.97
Answer:
0.414 mole (3 sig. figs.)
Explanation:
Given grams, moles = mass/formula weight
moles in 18.2g CO₂(g) = 18.2g/44g/mole = 0.413636364 mole (calc. ans.)
≅ 0.414 mole (3 sig. figs.)
Answer:
101.50 g H₂O
Explanation:
The mole ratio of HNO₃ and H₂O is 6 : 2
Hence, 16.9 moles of HNO₃ will produce = 2/6×16.9 = 5.63 moles of H₂O
Also,
Mass = Moles × M.Mass
Mass = 5.63 mol × 18.02 g/mol
Mass = 101.50 g H₂O