You can see and download from the link
https://tlgur.com/d/GYYVL5lG
Please don't forget to put heart ♥️
Answer:
The principal stresses are σp1 = 27 ksi, σp2 = -37 ksi and the shear stress is zero
Explanation:
The expression for the maximum shear stress is given:

Where
σx = stress in vertical plane = 20 ksi
σy = stress in horizontal plane = -30 ksi
τM = 32 ksi
Replacing:

Solving for τxy:
τxy = ±19.98 ksi
The principal stress is:

Where
σp1 = 20 ksi
σp2 = -30 ksi
(equation 1)
equation 2
Solving both equations:
σp1 = 27 ksi
σp2 = -37 ksi
The shear stress on the vertical plane is zero
Answer: 0.95 inches
Explanation:
A direct load on a column is considered or referred to as an axial compressive load. A direct concentric load is considered axial. If the load is off center it is termed eccentric and is no longer axially applied.
The length= 64 inches
Ends are fixed Le= 64/2 = 32 inches
Factor Of Safety (FOS) = 3. 0
E= 10.6× 10^6 ps
σy= 4000ps
The square cross-section= ia^4/12
PE= π^2EI/Le^2
6500= 3.142^2 × 10^6 × a^4/12×32^2
a^4= 0.81 => a=0.81 inches => a=0.95 inches
Given σy= 4000ps
σallowable= σy/3= 40000/3= 13333. 33psi
Load acting= 6500
Area= a^2= 0.95 ×0.95= 0.9025
σactual=6500/0.9025
σ actual < σallowable
The dimension a= 0.95 inches
Answer:
± 0.003 ft
Explanation:
Since our distance is 10,000 ft and we need to use a full tape measure of 100 ft. We find that 10,000 = 100 × 100.
Let L' = our distance and L = our tape measure
So, L' = 100L
Now by error determination ΔL' = 100ΔL
Now ΔL' = ± 0.30 ft
ΔL = ΔL'/100
= ± 0.30 ft/100
= ± 0.003 ft
So, the maxim error per tape is ± 0.003 ft