Answer:
a)temperature=69.1C
b)3054Kw
Explanation:
Hello!
To solve this problem follow the steps below, the complete procedure is in the attached image
1. draw a complete outline of the problem
2. to find the temperature at the turbine exit use termodinamic tables to find the saturation temperature at 30kPa
note=Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
3. Using thermodynamic tables find the enthalpy and entropy at the turbine inlet, then find the ideal enthalpy using the entropy of state 1 and the outlet pressure = 30kPa
4. The efficiency of the turbine is defined as the ratio between the real power and the ideal power, with this we find the real enthalpy.
Note: Remember that for a turbine with a single input and output, the power is calculated as the product of the mass flow and the difference in enthalpies.
5. Find the real power of the turbine
Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem
Answer:
Explanation:
Given data:
initial construction co = 0.286 wt %
concentration at surface position cs = 0 wt %
carbon concentration cx = 0.215 wt%
time = 7 hr

for 0.225% carbon concentration following formula is used

where, erf stand for error function




from the table erf(Z) value = 0.751 lie between (z) = 0.80 and z = 0.85 so by inteerpolation we have z = 0.815
from given table



x = 0.002395 mm
Answer:
Pressure = 11.38 psi
Force = 13.981 Ibf
Explanation:
Step by step solution is in the attached document.
Answer:
The Euler buckling load of a 160-cm-long column will be 1.33 times the Euler buckling load of an equivalent 120-cm-long column.
Explanation:
160 - 120 = 40
120 = 100
40 = X
40 x 100 / 120 = X
4000 / 120 = X
33.333 = X
120 = 100
160 = X
160 x 100 /120 = X
16000 / 120 = X
133.333 = X