1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tiny-mole [99]
3 years ago
12

Liquid water is fed to a boiler at 24°C and 10 bar is converted at a constant pressure to saturated steam.

Engineering
1 answer:
zepelin [54]3 years ago
4 0

We can find the change in the enthalpy through the tables A5 for Saturated water, pressure table.

For 1bar=1000kPa:

T_{sat}=179.88\°c

H_{fg} = 2014.6kJ/kg

c_p=4.18 kJkg^{-1}{K^{-1}

\nu_g = 0.19436m^3/kg

Replacing,

\Delta h = h_{fg}+c_p(T_{sat}-T_{inlet})

\Delta h = 2014.6+4.18(179.88-24)

\Delta h=2666.17kJ/kg

With the specific volume we know can calculate the mass flow, that is

\dot{m}=\frac{\frac{15000}{3600}}{0.19436}

\dot{m} = 21.4378kg/s

Then the heat required in input is,

Q=\dot{m}\Delta h

Q=21.4378*2666.17

Q=57157.036kW

With the same value required of 15000m^3/h, we can calculate the velocity of the water, that is given by,

V= \frac{\dotV}{A}

V = \frac{\frac{15000}{3600}}{\pi /4 *(0.15)^2}

V=235.79m/s

Finally we can apply the steady flow energy equation, that is

\dot{m}(h_1+\frac{V^2}{2000})+Q = \dot{m}h_2

Re-arrange for Q,

Q=\dot{m}(h_2-h_1-\frac{V^2}{2000})

Q=\dot{m}(\Delta h-\frac{V^2}{2000})

Q= (21.4378)(2666.17-\frac{235.79^2}{2000})

Q= 56560.88kW

We can note that consider the Kinetic Energy will decrease the heat input.

You might be interested in
Pendulum impacting an inclined surface of a block attached to a spring-Dependent multi-part problem assign all parts NOTE: This
Art [367]

Answer:

vA = -2.55 m/s

vB = 0.947 m/s

Explanation:

Given:-

- The initial angle of rope, α = 30°

- The angle of rope just before impact or wedge angle, θ = 20°

- The weight of sphere, Ws = 1-lb

- The initial position velocity, vi = 4 ft/s

- The coefficient of restitution, e = 0.7

- The weight of the wedge, Ww = 2-lb

- The spring constant, k = 1.8 lb/in

- The length of rope, L = 2.6 ft

Find:-

 Determine the velocities of A and B immediately after the impact.

Solution:-

- We can first consider the ball ( acting as a pendulum ) to be isolated for study.

- There are no unbalanced fictitious forces acting on the sphere ball. Hence, we can reasonably assume that the energy is conserved.

- According to the principle of conservation for the initial point and the point just before impact.

Let,

              vA : The speed of sphere ball before impact

               

                  Change in kinetic energy = Change in potential energy

                  ΔK.E = ΔE.P

                  0.5*ms* ( uA^2 - vi^2 ) = ms*g*L*( cos ( θ ) - cos ( α ) )

                  uA^2 = 2*g*L*( cos ( θ ) - cos ( α ) ) + vi^2

                  uA = √ [ 2*32*2.6*( cos ( 20 ) - cos ( 30 ) ) + 4^2 ] = √28.25822

                  uA = 5.316 ft/s

- The coefficient of restitution (e) can be thought of as a measure of the extent to which mechanical energy is conserved when an object bounces off a surface:

                 e^2 = ( K.E_after impact / K.E_before impact )

- The respective Kinetic energies are:

               

                K.E_after impact = K.E_sphere + K.E_block

                                             = 0.5*ms*vA^2 + 0.5*mb*vB^2

                K.E_before impact = K.E = Ws*L*( cos ( θ ) - cos ( α ) )

                                                         = 1*2.6*( cos ( 20 ) - cos ( 30 ) )

                                                         = 0.1915 J

                32*2*0.1915*0.7^2 = Ws*vA^2 + Wb*vB^2  

                6.00544 = vA^2 + 2*vB^2  ... Eq1

- From conservation of linear momentum we have:

                vB = e*( uA - uB )*cos ( 20 ) + vA

                vB = 0.7*( 5.316 - 0 )*cos ( 20)   + vA

                vB = 3.49678 + vA  .... Eq 2

- Solve two equation simultaneously:

               

               6.00544 = vA^2 + 2*(3.49678 + vA)^2

               6.00544 = 3vA^2 + 13.98*vA + 24.455

               3vA^2 + 14.8848*vA + 18.4495 = 0

               vA = -2.55 m/s

               vB = 0.947 m/s

                                 

5 0
4 years ago
When compared to early vehicles, modern vehicles do not have?
KIM [24]
Modern vehicles do not have steam or coal engines
6 0
3 years ago
Read 2 more answers
2. Describe the three phases of the life cycle curve Draw the curve and label it in detail (the
miskamm [114]
57665554455555555rrtttyyyyuuiyt
5 0
3 years ago
Which is/are not a mechanism commonly associated with tool wear (mark all that apply)?a. Adhesion b. Attrition c. Abrasion d. Co
butalik [34]

Answer: d)Coercion

Explanation:Tool wear is defined as the situation when the cutting tool is subjected to the regular process of cutting metal then they tend to wear because of the continuous action of cutting and facing stresses and pressure . The mechanism that does not happen during this process are coercion that means the process of exerting forces on any material forcefully against the will or need. Therefore, adhesion,attrition and abrasion are the process of tool wear .So the correct option is (d)

5 0
3 years ago
Calculate the reluctance of a 4-meter long toroidal coil made of low-carbon steel with an inner radius of 1.75 cm and an outer r
My name is Ann [436]

Answer:

R = 31.9 x 10^(6) At/Wb

So option A is correct

Explanation:

Reluctance is obtained by dividing the length of the magnetic path L by the permeability times the cross-sectional area A

Thus; R = L/μA,

Now from the question,

L = 4m

r_1 = 1.75cm = 0.0175m

r_2 = 2.2cm = 0.022m

So Area will be A_2 - A_1

Thus = π(r_2)² - π(r_1)²

A = π(0.0225)² - π(0.0175)²

A = π[0.0002]

A = 6.28 x 10^(-4) m²

We are given that;

L = 4m

μ_steel = 2 x 10^(-4) Wb/At - m

Thus, reluctance is calculated as;

R = 4/(2 x 10^(-4) x 6.28x 10^(-4))

R = 0.319 x 10^(8) At/Wb

R = 31.9 x 10^(6) At/Wb

8 0
4 years ago
Other questions:
  • A wall in a house contains a single window. The window consists of a single pane of glass whose area is 0.15 m2 and whose thickn
    10·1 answer
  • Consider a cubic block whose sides are 6 cm long and a cylindrical block whose height and diameter are also 6 cm. both blocks ar
    8·1 answer
  • A 78-percent efficient 12-hp pump is pumping water from a lake to a nearby pool at a rate of 1.5 ft3/s through a constant-diamet
    10·1 answer
  • Which of the following might be a job or task of an IT worker who manages
    14·1 answer
  • Developed an automated program in any language which take 12 dependent variable and corresponding independent variables and show
    14·1 answer
  • A 280 km long pipeline connects two pumping stations. It is desired to pump 0.56 m3/s of oil through a 0.62 m diameter line, the
    14·1 answer
  • What are the use of logic gates in the field of robotics?
    10·1 answer
  • Can someone pls give me the answer to this?
    9·1 answer
  • 1. A company has an annual demand for a product of 2000 units, a carrying cost of $20per unit per year, and a setup cost of $100
    13·1 answer
  • Calculate area moment of inertia for a circular cross section with 6 mm diameter
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!