Units of impulse: N • s, kg • meters per second
Explanation:
Impulse is defined in two ways:
1)
Impulse is defined as the product between the force exerted in a collision and the duration of the collision:

where
F is the force
is the time interval
Since the force is measured in Newtons (N) and the time is measured in seconds (s), the units for the impulse are
![[I] = [N][s]](https://tex.z-dn.net/?f=%5BI%5D%20%3D%20%5BN%5D%5Bs%5D)
So,
N • s
2)
Impulse is also defined as the change in momentum experienced by an object:

where the change in momentum is given by

where m is the mass and
is the change in velocity.
The mass is measured in kilograms (kg) while the change in velocity is measured in metres per second (m/s), therefore the units for impulse are
![[I]=[kg][m/s]](https://tex.z-dn.net/?f=%5BI%5D%3D%5Bkg%5D%5Bm%2Fs%5D)
so,
kg • meters per second
Learn more about impulse:
brainly.com/question/9484203
#LearnwithBrainly
F=K*X,
F=M*a
M*a=K*X
2.5*9.81=K*0.0276
24.525=K*0.0276
24.525/0.0276=K
K= 888.6 N/m ---- force constant
assuming 2.5 refers to the new extension, just divide F/ 0.025
to get
981N/m
working...
Sound wave needs medium to travel
as energy which travels in this wave is because of transfer from one particle to another particle
If there is no medium then energy can not be transferred and sound wave will not travel
so in vacuum we can not listen sound
similarly here air is removed it means there is no medium inside the jar to travel the sound and hence we can not hear it
Option B is correct
Without air, the sound waves cannot travel to the ear.
Answer:
What would most likely happen as a result of the generator in a wind turbine breaking?
The What would most likely happen as a result of the generator in a wind turbine breaking?
The blades would not be turned.
Less steam would be produced.
Electricity would not be generated.
Solar energy would not be absorbed.
The blades would not be turned.
Less steam would be produced.
Electricity would not be generated.
Solar energy would not be absorbed.
Explanation:
F
Answer:
Max speed = 
Max acceleration = 
Explanation:
Given the description of period and amplitude, the SHM could be described by:

and its angular velocity can be calculated doing the derivative:

And therefore, the tangential velocity is calculated by multiplying this expression times the radius of the movement (3 m):
and is given in m/s.
Then the maximum speed is obtained when the cosine function becomes "1", and that gives:
Max speed = 
The acceleration is found from the derivative of the velocity expression, and therefore given by:

and the maximum of the function will be obtained when the sine expression becomes "-1", which will render:
Max acceleration = 