Answer:
91.87 m/s
Explanation:
<u>Given:</u>
- x = initial distance of the electron from the proton = 6 cm = 0.06 m
- y = initial distance of the electron from the proton = 3 cm = 0.03 m
- u = initial velocity of the electron = 0 m/s
<u>Assume:</u>
- m = mass of an electron =
- v = final velocity of the electron
- e = magnitude of charge on an electron =
- p = magnitude of charge on a proton =
We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.
Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.
Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.
Pretty sure it is clockwise if I am not mistaken
Answer:
The answer is 4N or B
Explanation:
Just the equation W = F x D.
We have W = 8 J and D = 2 m using algebra ....
8J/2m = F ... F = 4.
Answer: a) 19.21m b) 3.92secs
Explanation:
a) Maximum height reached by the object is the height reached by an object before falling freely under gravity.
Maximum height = U²/2g
U is the initial velocity = 19.6m/s
g is acceleration due to gravity = 10m/s²
Maximum Height = 19.6²/2(10)
H = 19.21m
b) The time elapsed before the stone hits the ground is the time of flight T= 2U/g
T= 2(19.6)/10
T = 39.2/10
Time elapsed is 3.92secs
It is fairly easy to build an electromagnet. All you need to do is wrap some insulated copper wire around an iron core. If you attach a battery to the wire, an electric current will begin to flow and the iron core will become magnetized. When the battery is disconnected, the iron core will lose its magnetism. Follow these steps.
Step 1 - Gather the Materials
One iron nail fifteen centimeters (6 in) long
Three meters (10 ft) of 22 gauge insulated, stranded copper wire
One or more D-cell batteries
Step 2 - Remove some Insulation
Step 3 - Wrap the Wire Around the Nail
Step 4 - Connect the Battery