1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Step2247 [10]
3 years ago
14

What is produced when constantly changing electric and magnetic fields cause electrically charged particles to vibrate or accele

rate?
A. electromagnetic spectrum
B. magnetic fields in space
C.transverse magnetic waves
D.electromagnetic waves
Physics
1 answer:
zhannawk [14.2K]3 years ago
4 0
It would be D) Electromagnetic waves
Hope it helped!
You might be interested in
I would give brainliest if you have me!
Ket [755]
She can first measure the mass on the scale, then measure the cm^3 by putting water in the cylinder and measuring the original water level minus the water level after you put the rock in. The take the measurement from the scale (g) and divide it by the measurement in the graduated cylinder (c^3).
5 0
3 years ago
What is the circle of least confusion?
Artist 52 [7]

Answer and Explanation:

In optics, a CoC(Circle of Confusion) is defined the minimum cross section of a paraxial bundle of rays made by a lens which is sphero-cylindrical type and can be viewed as an optical spot, which do not converge perfectly at the focus  while a point source is being imaged due to spherical aberration.

The Circle of Confusion is also referred to as circle of indistinctness or a blur spot

5 0
4 years ago
A thin, metallic spherical shell of radius 0.227 m has a total charge of 6.03 × 10 − 6 C placed on it.
KATRIN_1 [288]

Answer:

Explanation:

Given

radius r=0.227 m

Charge on surface Q=6.03\times 10^{-6} C

Point Charge inside sphere q=1.15\times 10^{-6} C

Electric Field at r=0.735 m

Treating Surface charge as Point charge and applying Gauss law

E_{total}A=\frac{q_{enclosed}}{\epsilon _0}

where A=surface area up to distance r

E_{total}=\frac{Q+q}{4\pi r^2}

E_{total}=\frac{6.03\times 10^{-6}+1.15\times 10^{-6}}{4\pi (0.735)^2\times 8.85\times 10^{-12}}

E_{total}=1.194\times 10^{5} N/C

3 0
4 years ago
Familiarize yourself with the map showing the DSDP Leg 3 drilling locations and the position of the mid-ocean ridge (Figure 1 to
Inga [223]

Answer:

For more than 40 years, results from scientific ocean drilling have contributed to global understanding of Earth’s biological, chemical, geological, and physical processes and feedback mechanisms. The majority of these internationally recognized results have been derived from scientific ocean drilling conducted through three programs—the Deep Sea Drilling Project (DSDP; 1968-1983), the Ocean Drilling Program (ODP; 1984-2003), and the Integrated Ocean Drilling Program (IODP; 2003-2013)—that can be traced back to the first scientific ocean drilling venture, Project Mohole, in 1961. Figure 1.1 illustrates the distribution of drilling and sampling sites for each of the programs, and Appendix A presents tables of DSDP, ODP, and IODP legs and expeditions. Although each program has benefited from broad, international partnerships and research support, the United States has taken a leading role in providing financial continuity and administrative coordination over the decades that these programs have existed. Currently, the United States and Japan are the lead international partners of IODP, while a consortium of 16 European countries and Canada participates in IODP under the auspices of the European Consortium for Ocean Research Drilling (ECORD). Other countries (including China, Korea, Australia, New Zealand, and India) are also involved.

As IODP draws to a close in 2013, a new process for defining the scope of the next phase of scientific ocean drilling has begun. Illuminating Earth’s Past, Present, and Future: The International Ocean Discovery Program Science Plan for 2013-20231 (hereafter referred to as “the science plan”), which is focused on defining the scientific research goals of the next 10-year phase of scientific ocean drilling, was completed in June 2011 (IODP-MI, 2011). The science plan was based on a large, multidisciplinary international drilling community meeting held in September 2009.2 A draft of the plan was released in June 2010 to allow for additional comments from the broader geoscience community prior to its finalization. As part of the planning process for future scientific ocean drilling, the National Science Foundation (NSF) requested that the National Research Council (NRC) appoint an ad hoc committee (Appendix B) to review the scientific accomplishments of U.S.-supported scientific ocean drilling (DSDP, ODP, and IODP) and assess the science plan’s potential for stimulating future transformative scientific discoveries (see Box 1.1 for Statement of Task). According to NSF, “Transformative research involves ideas, discoveries, or tools that radically change our understanding of an important existing scientific or engineering concept or educational practice or leads to the creation of a new paradigm or field of science, engineering, or education. Such research challenges current understanding or provides pathways to new frontiers.”3 This report is the product of the committee deliberations on that review and assessment.

HISTORY OF U.S.-SUPPORTED SCIENTIFIC OCEAN DRILLING, 1968-2011

The first scientific ocean drilling, Project Mohole, was conceived by U.S. scientists in 1957. It culminated in drilling 183 m beneath the seafloor using the CUSS 1 drillship in 1961. During DSDP, Scripps Institution of Oceanography was responsible for drilling operations with the drillship Glomar Challenger. The Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), which initially consisted of four U.S. universities and research institutions, provided scientific advice. Among its numerous achievements, DSDP

Explanation:

7 0
3 years ago
X = v xo t. x = (10.0 m/s)(3.53 s) x = ????
LenaWriter [7]

x = V<em>x</em> * t

given V<em>x</em> = 10m/s n t = 3.53s

x = 10 * 3.53

= 35.3m


7 0
3 years ago
Read 2 more answers
Other questions:
  • A student compresses the spring in a pop up toy .020 meter if the sprinf has a spring constant of 340 newtons per meter how much
    7·1 answer
  • There are 10 deciliters in a liter how many liters are in 82 deciliters?
    12·1 answer
  • If you move a negatively charged rod close to a neutral item, like a doorknob the electrons on the doorknob will
    5·2 answers
  • How do transformers work in electric power houses
    14·1 answer
  • A uniform plank of length 6.1 m and mass 33 kg rests horizontally on a scaffold, with 1.6 m of the plank hanging over one end of
    5·1 answer
  • During a tennis match, a player serves the ball at a speed s, with the center of the ball leaving the racquet at angle θ below t
    15·1 answer
  • What instrument will we use to find liquid volume
    5·1 answer
  • What does a resistor in an electrical dp
    12·1 answer
  • The force required to maintain an object at a constant speed while on frictionless ice is
    11·1 answer
  • Find the mass of a football player who has 1200 N of force and has an acceleration of 1.5 m/s2 ?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!