DO NOT CLICK THE LINK THE OTHER PERSON COMMENTED PLS
The correct options are as follows:
1. A.
A synthesis reaction is a type of reaction in which two or more reactants combine together to form only one product. Synthesis reaction always release energy in form of light and heat, therefore, they are usually exothermic reactions. In the option given in A, nitrogen and nitrogen combine together to form ammonia; this is a synthesis reaction.
2. D
A radioactive half life refers to the amount of time it will take for half of an original radioactive isotope to decay.
In the question given above, the half life of the element is 1000. Thus, in 1000 years only half of the original amount will remain. In another 1000 years only 1/4 of the original amount will remain and in another 1000 years only 1/8 of the original amount will remain. Therefore, it will take 3 half lives before 1/8 of the original sample remain.<span />
Answer:
The equation: (NH₄)₂SO₄ = 2NH4(+) + SO4(-2)
The number of moles = 5 g / 132.14 g/mol = 0.038 mol
The number of molecules = 0.038 X 6.022x10^23 = 2.29x10^23
the number of positive ions present in the ammonium sulphate solution:
2 positive ions for every 1 molecule of (NH₄)₂SO₄
so 2 x 2.29x10^23 = 4.58x10^23
the number of negative ions present in the ammonium sulphate solution
1 negative ion for every 1 molecule of (NH₄)₂SO₄
so 1 x 2.29x10^23 = 2.29x10^23
the total number of ions present in the ammonium sulphate solution
4.58x10^23 + 2.29x10^23 = 6.87x10^23
Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.