The first: alright, first: you draw the person in the elevator, then draw a red arrow, pointing downwards, beginning from his center of mass. This arrow is representing the gravitational force, Fg.
You can always calculate this right away, if you know his mass, by multiplying his weight in kg by the gravitational constant

let's do it for this case:

the unit of your fg will be in Newton [N]
so, first step solved, Fg is 637.65N
Fg is a field force by the way, and at the same time, the elevator is pushing up on him with 637.65N, so you draw another arrow pointing upwards, ending at the tip of the downwards arrow.
now let's calculate the force of the elevator

so you draw another arrow which is pointing downwards on him, because the elevator is accelating him upwards, making him heavier
the elevator force in this case is a contact force, because it only comes to existence while the two are touching, while Fg is the same everywhere
Complete Question
A ball having mass 2 kg is connected by a string of length 2 m to a pivot point and held in place in a vertical position. A constant wind force of magnitude 13.2 N blows from left to right. Pivot Pivot F F (a) (b) H m m L L If the mass is released from the vertical position, what maximum height above its initial position will it attain? Assume that the string does not break in the process. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m.What will be the equilibrium height of the mass?
Answer:


Explanation:
From the question we are told that
Mass of ball 
Length of string 
Wind force 
Generally the equation for
is mathematically given as




Max angle =
Generally the equation for max Height
is mathematically given as



Generally the equation for Equilibrium Height
is mathematically given as



Answer:
Newton's first law
Explanation:
Newton's first law states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force. Therefore, when the ice is smooth, friction gets lesser, and the force acted on that Puck will be decreased.
Work done by a given force is given by

here on sled two forces will do work
1. Applied force by Max
2. Frictional force due to ground
Now by force diagram of sled we can see the angle of force and displacement
work done by Max = 

Now similarly work done by frictional force



Now total work done on sled


Answer:
A
Explanation:
the metal lunchbox has a higher conductivity
<h2 />