<span>What we need to first do is split the ball's velocity into vertical and horizontal components. To do that multiply by the sin or cos depending upon if you're looking for the horizontal or vertical component. If you're uncertain as to which is which, look at the angle in relationship to 45 degrees. If the angle is less than 45 degrees, the larger value will be the horizontal speed, if the angle is greater than 45 degrees, the larger value will be the vertical speed. So let's calculate the velocities
sin(35)*18 m/s = 0.573576436 * 18 m/s = 10.32437585 m/s
cos(35)*18 m/s = 0.819152044 * 18 m/s = 14.7447368 m/s
Since our angle is less than 45 degrees, the higher velocity is our horizontal velocity which is 14.7447368 m/s.
To get the x positions for each moment in time, simply multiply the time by the horizontal speed. So
0.50 s * 14.7447368 m/s = 7.372368399 m
1.00 s * 14.7447368 m/s = 14.7447368 m
1.50 s * 14.7447368 m/s = 22.1171052 m
2.00 s * 14.7447368 m/s = 29.48947359 m
Rounding the results to 1 decimal place gives
0.50 s = 7.4 m
1.00 s = 14.7 m
1.50 s = 22.1 m
2.00 s = 29.5 m</span>
<span>The bullfrog is sitting at rest on the log. The force of gravity pulls down on the bullfrog. We can find the weight of the bullfrog due to the force of gravity.
weight = mg = (0.59 kg) x (9.80 m/s^2)
weight = 5.782 N
The bullfrog is pressing down on the log with a force of 5.782 newtons. Newton's third law tells us that the log must be pushing up on the bullfrog with a force of the same magnitude. Therefore, the normal force of the log on the bullfrog is 5.782 N</span>
Answer:
This can be used to find out the speed of the returned journey. The equation means speed = returned distance ÷ time.
Explanation:
Well, the thing is: we don't really know, as we don't even know how many species there are on earth.
If we take a look at the estimates of <span>World Wide Fund for Nature, an organization that works toward combating species extinction, their estimates vary from 200 to 100 000 - but a probable number is 20 000 (d). </span>
<span />