The SI unit for the amount of substance present is the mole.
The mole is defined as the amount of substance that has the same amount of particles as there are atoms in 12 grams of carbon-12. Mathematically, the moles of a substance may be computed using:
moles present = mass of substance / molecular mass of substance
Answer:
A) potential energy is stored energy. Kenetic energy is energy of motion.
Answer: 25.8 g of
will be produced from the decomposition of 73.4 g of
Explanation:
To calculate the moles :

The balanced chemical reaction is:
According to stoichiometry :
2 moles of
produce = 3 moles of 
Thus 0.242 moles of will produce=
of 
Mass of
= 
Thus 25.8 g of
will be produced from the decomposition of 73.4 g of
Answer: 9.9 grams
Explanation:
To calculate the moles, we use the equation:

a) moles of 

b) moles of 


According to stoichiometry :
1 mole of
combine with 1 mole of
Thus 0.33 mole of
will combine with =
mole of
Thus
is the limiting reagent as it limits the formation of product.
As 1 mole of
give = 1 mole of 
Thus 0.33 moles of
give =
of 
Mass of 
Thus theoretical yield (g) of
produced by the reaction is 9.9 grams
<h3>
Answer:</h3>
9.6724 g MgO
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2Mg + O₂ → 2MgO
[Given] 5.8332 g Mg
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol Mg = 2 mol MgO
Molar Mass of Mg - 24.31 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of MgO - 24.31 + 16.00 = 40.31 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 5 sig figs.</em>
9.67241 g MgO ≈ 9.6724 g MgO