They are
parallel circuit and series circuit
Answer:
The heat capacity for the sample is 0.913 J/°C
Explanation:
This is the formula for heat capacity that help us to solve this:
Q / (Final T° - Initial T°) = c . m
where m is mass and c, the specific heat of the substance
27.4 J / (80°C - 50°C) = c . 6.2 g
[27.4 J / (80°C - 50°C)] / 6.2 g = c
27.4 J / 30°C . 1/6.2g = c
0.147 J/g°C = c
Therefore, the heat capacity is 0.913 J/°C
Cold water<span> is </span>more dense<span> and will sink in room-temperature </span>water<span>. hope it helps :)</span>
Answer:
12.7 mol
Explanation:
<em>A chemist measures the amount of fluorine gas produced during an experiment. He finds that 482. g of fluorine gas is produced. Calculate the number of moles of fluorine gas produced.</em>
Step 1: Given data
Mass of fluorine (m): 482. g
Step 2: Determine the molar mass (M) of fluorine
Fluorine is a diatomic molecule of chemical formula F₂. Its molar mass is:
mF₂ = 2 × mF = 2 × 19.00 g/mol = 38.00 g/mol
Step 3: Determine the number of moles (n) corresponding to 482. g of fluorine
We will use the following expression,.
n = m/M
n = 482. g/(38.00 g/mol)
n = 12.7 mol