(a) We can find the current flowing between the walls by using Ohm's law:

where

is the potential difference and

is the resistance. Substituting these values, we get

(b) The total charge flowing between the walls is the product between the current and the time interval:

The problem says

, so the total charge is

The current consists of Na+ ions, each of them having a charge of

. To find the number of ions flowing, we can simply divide the total charge by the charge of a single ion:
Answer:
The heavier piece acquired 2800 J kinetic energy
Explanation:
From the principle of conservation of linear momentum:
0 = M₁v₁ - M₂v₂
M₁v₁ = M₂v₂
let the second piece be the heavier mass, then
M₁v₁ = (2M₁)v₂
v₁ = 2v₂ and v₂ = ¹/₂ v₁
From the principle of conservation of kinetic energy:
¹/₂ K.E₁ + ¹/₂ K.E₂ = 8400 J
¹/₂ M₁(v₁)² + ¹/₂ (2M₁)(¹/₂v₁)² = 8400
¹/₂ M₁(v₁)² + ¹/₄M₁(v₁)² = 8400
K.E₁ + ¹/₂K.E₁ = 8400
Now, we determine K.E₁ and note that K.E₂ = ¹/₂K.E₁
1.5 K.E₁ = 8400
K.E₁ = 8400/1.5
K.E₁ = 5600 J
K.E₂ = ¹/₂K.E₁ = 0.5*5600 J = 2800 J
Therefore, the heavier piece acquired 2800 J kinetic energy
Answer:
A
Explanation:
because in the moving object there's a certain energy applied
C.) Mitochondria is the answer...