The equilibrium constant for this reaction at 350°C is D. 282.
<h3>Equilibrium constant</h3>
A dynamic chemical system approaches chemical equilibrium constant when enough time has passed and its composition no longer exhibits any discernible propensity to change further. The equilibrium constant of a chemical reaction is the value of its reaction quotient in this condition. The equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture for a specific set of reaction conditions. Understanding equilibrium constants is crucial for comprehending many chemical systems as well as biological processes like the transport of oxygen by hemoglobin in the blood and the maintenance of acid-base homeostasis in the human body. There are many different kinds of equilibrium constants, including stability constants, formation constants, binding constants, association constants, and dissociation constants.
Learn more about equilibrium constant here:
brainly.com/question/10038290
#SPJ1
A mixture of 0.600 mol of bromine and 1.600 mol of iodine is placed into a rigid 1.000-L container at 350°C.
Br2(g) + I2(g) ↔ 2IBr(g)
When the mixture has come to equilibrium, the concentration of iodine monobromide is
1.190 M. What is the equilibrium constant for this reaction at 350°C? Show step-by step explanation.
A) 3.55 × 10^3
B) 1.24
C) 1.47
D) 282
E) 325
Answer:
42 days
Explanation:
Half life = 8.4 days
Starting mass = 40.0 g
Time = ?
Final Mass = 1/16 * 40 = 2.5 g
First Half life;
Remaining mass = 40 / 2 = 20g
Second Half life;
Remaining mass = 20 / 2 = 10g
Third Half life;
Remaining mass = 10 / 2 = 5g
Fourth Half life;
Remaining mass = 5 / 2 = 2.5g
Time = Number of half lives * Duration of half life = 5 * 8.4 = 42 days
Traditionally they include boron from group 3A, silicon and germanium in group 4A, aresnic and antimony in group 5A and tellurium from group 6A, although sometimes selenium, astatine, polonium and even bismuth have also been considered as metalloids. Typically metalloids are brittle and show a semi-metallic luster.
The six commonly recognised metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. Five elements are less frequently so classified: carbon, aluminium, selenium, polonium, and astatine.
This is the correct answer please mark me as brainliest