First we need to find the number of moles of hydrogen gas formed
Zn + 2HCl ---> ZnCl₂ + H₂
stoichiometry of Zn to H₂ is 1:1
the number of Zn moles reacted - 2.4 g / 65.4 g/mol = 0.0367 mol
assuming Zn to be the limiting reactant
number of Zn moles reacted = number of H₂ moles formed
therefore number of H₂ moles formed = 0.0367 mol
we can use ideal gas law equation to find the pressure
PV = nRT
P - pressure
V - Volume - 450 x 10⁻⁶ m³
n - number of moles - 0.0367 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 32 °C + 273 = 305 K
substituting these values in the equation
P x 450 x 10⁻⁶ m³ = 0.0367 mol x 8.314 Jmol⁻¹K⁻¹ x 305 K
P = 206.8 kPa
pressure is 206.8 kPa
Your answer is A my friend as the atomic number of an atom is determined by the number of protons
1 liter = 1,000 milliliters
Answer:
Metals are good conductors of heat and electricity, and are malleable (they can be hammered into sheets) and ductile (they can be drawn into wire). Most of the metals are solids at room temperature, with a characteristic silvery shine (except for mercury, which is a liquid). Nonmetals are (usually) poor conductors of heat and electricity, and are not malleable or ductile; many of the elemental nonmetals are gases at room temperature, while others are liquids and others are solids.
Explanation:
Answer:

Explanation:
We know, 
where, R = 0.0821 L.atm/(mol.K), T is temperature in kelvin and
is difference in sum of stoichiometric coefficient of products and reactants
Here
and T = 311 K
So, ![K_{p}=(0.0111)\times [(0.0821L.atm.mol^{-1}.K^{-1})\times 311K]^{-1}=4.35\times 10^{-4}](https://tex.z-dn.net/?f=K_%7Bp%7D%3D%280.0111%29%5Ctimes%20%5B%280.0821L.atm.mol%5E%7B-1%7D.K%5E%7B-1%7D%29%5Ctimes%20311K%5D%5E%7B-1%7D%3D4.35%5Ctimes%2010%5E%7B-4%7D)
Hence value of equilibrium constant in terms of partial pressure
is 