Answer:
<span>Carbon readily forms covalent bonds with other carbon atoms.
Explanation:
As we know approximately more than 95 % compounds, either isolated, discovered or synthesized belongs to organic compounds containing carbon atoms.
This great diversity of organic compounds is due to following facts.
1) Catenation:
Carbon has a peculiar behavior of self linkage. This self linkage of one carbon with another is called as catenation. In this way carbon can form a long chain of carbon atom. A branching can also take place when one carbon is bonded further to three of four carbon atoms.
2) Isomerism:
Secondly the carbon containing compounds show isomerism. In which molecular formula is same but structural formula is different. For example molecular formula C</span>₅H₁₂ can make following compounds,
a) n-Pentane
b) 2-Methylbutane
c) 2,2-Dimethylpropane
3) Multiple Bonds:
Carbon can form multiple bonds i.e double bond like in alkenes and triple bonds like in alkyne.
Due to these factors carbon gets very high number of opportunities to form large number of compounds.
No more solute will dissolve at that temperature, the temperature would have to be increased in order for more solute to dissolve.
Three resonance structures can be drawn for the allyl cation while two resonance structures can be drawn for the amidate ion.
Sometimes, we cannot fully describe the bonding in a chemical specie using a single chemical structure. In such cases, we have to use a number of structures which cooperatively represent the actual bonding in the molecule. These structures are called resonance or canonical structures.
The resonance structures of the allyl cation and the amidate ion are shown in the images attached to this answer. These structures show the different bonding extremes in these organic ions.
Learn more: brainly.com/question/4933048
This problem could be solved easily using the Henderson-Hasselbach equation used for preparing buffer solutions. The equation is written below:
pH = pKa + log[(salt/acid]
Where salt represents the molarity of salt (sodium lactate), while acid is the molarity of acid (lactic acid).
Moles of salt = 1 mol/L * 25 mL * 1 L/1000 mL = 0.025 moles salt
Moles of acid = 1 mol/L* 60 mL * 1 L/1000 mL = 0.06 moles acid
Total Volume = (25 mL + 60 mL)*(1 L/1000 mL) = 0.085 L
Molarity of salt = 0.025 mol/0.085 L = 0.29412 M
Molarity of acid = 0.06 mol/0.085 L = 0.70588 M
Thus,
pH = 3.86 + log(0.29412/0.70588)
pH = 3.48
Answer: 2.5 cups of tomato sauce is 625 milliliters of tomato sauce
Explanation: