Answer:
129.6 seconds
Explanation:
Given that :
α = 0.0002°c-1
θ1 = 20°C
θ2 = 5°C
Time t = one day ; Converting to seconds ; number of seconds in a day ; (24 * 60 * 60) = 86400 seconds
Let dT= change in time
Using the relation :
dT = 0.5* α * dθ * t
dθ = (20 - 5) = 15°C
dT = 0.5 * 0.0002 * 15 * 86400
dT = 129.6 seconds
Answer:
to check for errors.
Explanation:
since some of the components of the scale are metallic, they are prone to rusting which would cause error in reading of the scale so there is organized checking if the scale to correct that.
hope it helps .
Answer:
the rock hit the board you go flying because you board stops but you have energy still going so there for you go flying
Explanation:
Answer:
0.39
Explanation:
In order not to slide, you must have exactly the same acceleration of the train:

where
g = 9.81 m/s^2
There is only one force acting on you: the static frictional force that "pulls" you forward, and it is given by

According to Newton's second law, the net force acting on you (so, the frictional force) must be equal to your mass times the acceleration, so we have

from which we find

so, the minimum coefficient of static friction must be 0.39.
Answer:
v = 306.76 Km/h
Explanation:
given,
height of the aircraft = 3000 m
differential pressure reading = 3300 N/m²
density of air = 0.909 Kg/m³
speed of aircraft = ?
Assuming the air flowing above air craft is in-compressible, irrotational and steady so, we can use Bernoulli's equation to solve the problem.
using Bernoulli's equation

where ρ is the density of the air at 3000 m



v = 85.21 m/s

v = 306.76 Km/h