Answer:
A(3.56m)
Explanation:
We have a conservation of energy problem here as well. Potential energy is being converted into linear kinetic energy and rotational kinetic energy.
We are given ω= 4.27rad/s, so v = ωr, which is 6.832 m/s. Place your coordinate system at top of the hill so E initial is 0.
Ef= Ug+Klin+Krot= -mgh+1/2mv^2+1/2Iω^2
Since it is a solid uniform disk I= 1/2MR^2, so Krot will be 1/4Mv^2(r^2ω^2= v^2).
Ef= -mgh+3/4mv^2
Since Ef=Ei=0
Mgh=3/4mv^2
gh=3/4v^2
h=0.75v^2/g
plug in givens to get h= 3.57m
How much gravitational potential energy does the block have
when it gets to the top of the ramp ?
(weight) x (height) = (15 N) x (0.2 m) = 3 Joules .
If there were no friction, you would only need to do 3 Joules of work
to lift the block from the bottom to the top.
But the question says you actually have to do 4 Joules of work
to get the job done.
Friction stole one of your Joules along the way.
Choice-4 is not the correct one.
Choice-1 is the correct one.
===========================
Notice that the mass of the block is NOT 15 kg , and you
don't have to worry about gravity to answer this question.
The formula for potential energy is (m)·(g)·(h) .
But (m·g) is just the WEIGHT, and the formula
is actually (weight)·(height).
The question GIVES us the weight of the block . . . 15 N .
So the potential energy at the top is just (15N)·(0.2m) = 3 Joules.
C. The membrane is inside the cell wall. The cell wall surrounds the membrane.
Frequency is inversely proportional to wavelength.
Wavelength is the spacial period, and more generally the frequency is inversely proportional to the period.
If the wave's speed if c, then f=c/l where l is the wavelength.