the one that is wrong is a. increase the molecular weight of the gas , the molecular weight never changes when a solid turns to a liquid or when a liquid turns to a gas .
Answer:
. A closed system allows only energy transfer but no transfer of mass. Example: a cup of coffee with a lid on it, or a simple water bottle. ... In reality, a perfectly isolated system does not exist, for instance hot water in a thermos flask cannot remain hot forever.
The answer is option number one
Answer:
Explanation:
At constant pressure and temperature, the mole ratio of the gases is equal to their volume ratio (a consequence of Avogadro's law).
Hence, the <em>complete combustion reaction</em> that has a ratio of 100 ml of gaseous hydrocarbon to 300 ml of oxygen, is that whose mole ratio is 1 mol hydrocarbon : 3 mol of oxygen.
Then, you must write the balanced chemical equations for the complete combustion of the four hydrocarbons in the list of choices, and conclude which has such mole ratio (1 mol hydrocarbon : 3 mol oxygen).
A complete combustion reaction of a hydrocarbon is the reaction with oxygen that produces CO₂ and H₂O, along with the release of heat and light.
<u>a. C₂H₄:</u>
- C₂H₄ (g) + 3O₂ (g) → 2CO₂(g) + 2H₂O (g)
Precisely, for this reaction the mole ratio is 1 mol C₂H₄: 2 mol O₂, hence, this is the right choice.
The following analysis just shows that the other options are not right.
<u>b. C₂H₂:</u>
- 2C₂H₂ (g) + 5O₂ (g) → 4CO₂(g) + 2H₂O (g)
The mole ratio for this reaction is 2 mol C₂H₂ :5 mol O₂.
<u>с. С₃Н₈</u>
- C₃H₈ (g) + 5O₂ (g) → 3CO₂(g) + 4H₂O (g)
The mole ratio is 1 mol C₃H₈ : 5 mol O₂
<u>d. C₂H₆</u>
- 2C₂H₆ (g) +7 O₂ (g) → 4CO₂(g) + 6H₂O (g)
The mole ratio is 2 mol C₂H₆ : 7 mol O₂
<h3><u>Answer;</u></h3>
Step 1; NaHCO3(s) + CH3COOH(l)
Step 2 ; CO2(g)
<h3><u>Explanation;</u></h3>
- The chemical equation for the reaction of baking soda (sodium bicarbonate, NaHCO3) and vinegar (acetic acid, CH3COOH) reaction occurs in two steps.
Step 1;
- A double displacement reaction in which acetic acid in the vinegar reacts with sodium bicarbonate to form sodium acetate and carbonic acid:
- Equation;
NaHCO3(s)+ CH3COOH(l) → CH3COONa(aq) + H2CO3(l)
Step 2;
- Carbonic acid is unstable and undergoes a decomposition reaction to produce the carbon dioxide gas:
H2CO3(l) → H2O(l) + CO2(g)