Answer:
- <em>Brønsted-Lowry acid: HNO₂</em>
- <em>Brønsted-Lowry base: NH₃</em>
- <em>Conjugate acid: NH₄⁺</em>
- <em>Conjugate base: NO₂⁻</em>
Explanation:
The equation is:

<em>Brønsted-Lowry acids</em> are H⁺ donors.
<em>Brønsted-Lowry bases</em> are H⁺ acceptors.
Thus, on the left side, <em>HNO₂</em> is the acid and <em>NH₃ </em>is the base.
The <em>conjugate acids</em> and <em>conjugate bases</em> are on the right side of the equation.
The <em>conjugate acid</em> is the spieces that is formed after a base accepts the proton; thus it is <em>NH₄⁺</em>. A <em>conjugate acid</em> contains one more H atom and one more + charge than the base that formed it.
The <em>conjugate base</em> is the species that is formed after the acid donates its proton; thus, <em>NO₂⁻</em> is the <em>conjugate base</em>. A <em>conjugate base</em> contains one less H atom and one more - charge than the acid that formed it.
Summarizing:
- Brønsted-Lowry acid: HNO₂
Molecules will move faster and spread apart on warmer temperatures The colder it get the slower the molecules move so naturally those water molecules are on the path to freezing
Answer:
See below
Explanation:
Q = m c T c = specific heat T = temp change Q = heat joules
32 = 4 c 40 <u> c = .2 J/g-C</u>
314 to 344 k is a change of 30 K
Q = m c T
= 4 * .2 * 30 = <u>24 Joules </u>