Answer:
(a) 7 m/s
(b) 931 rad/s
(c) 0.716 s
Explanation:
Gravity would be exerting on the 2 masses


Since heavier, mass 1 (M) would be the one pulling down, while mass 2 is being pulled up.
So the net force on mass 1 is

This force would generate torque on the solid pulley

We can also calculate the pulley moments of inertia, with it being solid

From there we can calculate the angular acceleration of the pulley, which generates the entire system motion

Since the system is moved by a distance of d = 2.5m, the pulley would have turn an angle of

(c)The time it takes to get to this distance is



(b)The final angular speed of the disk is

(a) And so the perimeter speed of the pulley, which is also speed of mass 1 when it comes to d = 2.5 m is

The acceleration due to gravity is given as:
g = GM/r²
<h3>
Derivation of gravitational acceleration:</h3>
According to Newton's second law of motion,
F = ma
where,
F = force
m = mass
a = acceleration
According to Newton's law of gravity,
F<em>g </em>= GMm/(r + h)²
F<em>g = </em>gravitational force
From Newton's second law of motion,
F<em>g </em>= ma
a = F<em>g</em>/m
We can refer to "a" as "g"
a = g = GMm/(m)(r + h)²
g = GM/(r + h)²
When the object is on or close to the surface, the value of g is constant and height has no considerable impact. Hence, it can be written as,
g = GM/r²
Learn more about gravitational acceleration here:
brainly.com/question/2142879
#SPJ4
The centripetal force, Fc, is calculated through the equation,
Fc = mv²/r
where m is the mass,v is the velocity, and r is the radius.
Substituting the known values,
Fc = (112 kg)(8.9 m/s)² / (15.5 m)
= 572.36 N
Therefore, the centripetal force of the bicyclist is approximately 572.36 N.
Answer:
what is the question. . .