wave theory
this observation supports the theory of light as a wave
Answer:
µ = 
Explanation:
µ = 1/ sinC
µ -----> refractive index of medium
C ----> critical angle
Hope this helps!
Answer:
Gravity is one major force that creates tides. In 1687, Sir Isaac Newton explained that ocean tides result from the gravitational attraction of the sun and moon on the oceans of the earth (Sumich, J.L., 1996).
Explanation:
I hope this helps.
The correct answer is hang glider.
A hang-glider cannot take off from low ground since it has no power. It needs to be launched from a high location, such a mountain or a hill. The major force acting on a hang-glider is gravity. The weight of the wing and the pilot together is this. The push that keeps the aerofoil flying through the air is produced by the weight. The hang-aerofoil glider's wing's form prevents it from falling to the ground like a stone. It results in lift. An area of low pressure is created by the aerofoil's acceleration of the air passing over the top of the wing. The air moving beneath the wing is compressed as the wing moves forward and downward. After then, the aerofoil is lifted up into the region of low pressure.
The air will gradually drop if it is still. A hang-glider descends at a speed of roughly 3.6 km/h (slow walking), or about 1 meter per second. A hang-glider needs to locate air coming up at the same rate as the glider is going down in order to maintain height. A hang-glider can fly along a cliff without losing height, for instance, if there is a light breeze coming straight from the sea, the air is being forced vertically upward by the cliff at 3.6 km/h, and the glider is flying over a vertical coastal cliff. The glider will begin to gain altitude in a stronger breeze.
Some hang-glider pilots equip their craft with tiny motors and propellers. They become microlights as a result and can now take off and climb from flat ground like a regular aircraft.
To learn more about hang-glider refer the link:
brainly.com/question/1365947
#SPJ9
Answer:
1300 rad (
)
Explanation:
The angular speed of an object is the rate of change of angular position.
It is given by:

where
is the angular speed
is the angular displacement of the object
t is the time elapsed
For the propeller rotating in this problem, we have
is the angular speed
t = 5.0 s is the time elapsed
Therefore, the angular displacement is:

And since
, the angle in degrees is
