Answer:
Thermal energy of an isolated system changes with time If the mechanical energy of that system is constant according to the first law of thermodynamics, which states that thermal energy of an isolated system can still change as long as the total energy of that system does not change.
Explanation:
Answer:
When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. One way of thinking about this higher energy state is to imagine that the electron is now moving faster, (it has just been "hit" by a rapidly moving photon)
A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ of the radiation by. E=hf=hcλ(energy of a photon) E = h f = h c λ (energy of a photon) , where E is the energy of a single photon and c is the speed of light.
Answer:
ididate is a good one and
Answer:
the magnitude of the charge Q on each plate is 
Explanation:
Given that :
mass (m) = 
charge (q) = +0.155 µC = 
angle 
Area A on each plate = 0.0135 m²
From the diagram below;
----- equation (1)
Also by using Gauss Law ;

----- equation (2)
Combination equation 1 and 2 together ; we have


