Answer:
Option A. 1 bar = 1 atm
Explanation:
Pressure has various units of measurement. Each unit of measurement can be converted to other units of measurement. For example:
1 atm = 1 bar
1 atm = 760 mmHg
1 atm = 760 torr
1 atm = 1×10⁵ N/m²
1 atm = 1×10⁵ Pa
With the above conversion scale we can convert from one unit to the other.
Considering the question given above, it is evident from the coversion scale illustrated above that only option A is correct.
Thus,
1 bar = 1 atm
Answer:
P_(pump) = 98,000 Pa
Explanation:
We are given;
h2 = 30m
h1 = 20m
Density; ρ = 1000 kg/m³
First of all, we know that the sum of the pressures in the tank and the pump is equal to that of the Nozzle,
Thus, it can be expressed as;
P_(tank)+ P_(pump) = P_(nozzle)
Now, the pressure would be given by;
P = ρgh
So,
ρgh_1 + P_(pump) = ρgh_2
Thus,
P_(pump) = ρg(h_2 - h_1)
Plugging in the relevant values to obtain;
P_(pump) = 1000•9.8(30 - 20)
P_(pump) = 98,000 Pa
A 500 g ball swings in a vertical circle at the end of a 1.4-m-long string. when the ball is at the bottom of the circle, the tension in the string is 18 n.
From the calculation, the value of the acceleration is 5.8 m/s^2.
<h3>What is uniform acceleration?</h3>
The term uniform acceleration refers to a situation in which the velocity increases by equal amounts in equal time intervals.
Given the fact that the car started from rest and reached a velocity of 780.34 mph or 348.84 m/s in 1 minute of 60 seconds;
v = u + at
a = v/t
a = 348.84 m/s/ 60 seconds
a = 5.8 m/s^2
Learn more about acceleration:brainly.com/question/12550364?
#SPJ1
Answer:
• riding on a Ferris wheel whose entrance and exit are the same
• walking around the block, starting from and ending at the same house
• running exactly one lap around a racetrack
Explanation:
Displacement simply means the.change in position of an object. In a situation whereby the initial and final position are thesame, the displacement will be zero.
The statements that describe a situation with a displacement of zero include:
• riding on a Ferris wheel whose entrance and exit are the same
• walking around the block, starting from and ending at the same house
• running exactly one lap around a racetrack