Answer:
The answer is 1/16
Explanation:
1. Persistence of vision refers to the optical illusion that occurs when visual perception of an object does not cease for some time after the rays of light proceeding from it have ceased to enter the eye. 2. The persistence of vision for normal eye is 1/16 if a second.
Answer:
Explanation:
In the x direction the force will be
½(-w₀)L/2 = -¼w₀L
acting ⅔(L/2) = L/3 below the x axis.
In the y direction the force will be
½(-w₀)L + ½w₀L/2 = -¼w₀L
the magnitude of the resultant will be
F = w₀L √((-¼)² + (-¼)²) = w₀L√⅛
in the direction
θ = arctan(-¼w₀L / -¼w₀L) = 225°
to find the distance, we balance moments
(w₀L√⅛)[d] = ½(w₀)L[⅔L] + ¼w₀L[⅔L/2] - ¼w₀L[L - ⅓L/2]
(√⅛)[d] = ½ [⅔L] + ¼ [⅔L/2] - ¼ [L - ⅓L/2]
(√⅛)[d] = ½[⅔L] + ¼[⅔L/2] - ¼[L - ⅓L/2]
(√⅛)[d] = ⅓L + ⅟₁₂L - ¼L + ⅟₂₄L
(√⅛)[d] = 5L/24
d = 5L/24 / (√⅛)
d = 5√⅛L/3
<span>
The purpose of a gasoline car engine is to convert gasoline into motion
so that your car can move. Currently the easiest way to create motion
from gasoline is to burn the gasoline inside an engine.
Therefore, a car engine is an internal combustion engine -- combustion takes place internally.
There is such a thing as an external combustion engine. A steam engine
in old-fashioned trains and steam boats is the best example of an
external combustion engine. The fuel (coal, wood, oil, whatever) in a
steam engine burns outside the engine to create steam, and the steam
creates motion inside the engine. Internal combustion is a lot more
efficient (takes less fuel per mile) than external combustion, plus an
internal combustion engine is a lot smaller than an equivalent external
combustion engine. This explains why we don't see any cars using steam
engines.
To understand the basic idea behind how a reciprocating internal
combustion engine works, it is helpful to have a good mental image of
how "internal combustion" works.
One good example is an old Revolutionary War cannon. You have probably
seen these in movies, where the soldiers load the cannon with gun powder
and a cannon ball and light it. That is internal combustion, but it is
hard to imagine that having anything to do with engines.
A potato cannon uses the basic principle behind any reciprocating
internal combustion engine: If you put a tiny amount of high-energy fuel
(like gasoline) in a small, enclosed space and ignite it, an incredible
amount of energy is released in the form of expanding gas. You can use
that energy to propel a potato 500 feet. In this case, the energy is
translated into potato motion. You can also use it for more interesting
purposes. For example, if you can create a cycle that allows you to set
off explosions like this hundreds of times per minute, and if you can
harness that energy in a useful way, what you have is the core of a car
engine! </span>
Answer:
A) If you halve the wavelength, the electromagnetic radiation energy will double.
B) The energy of the electromagnetic radiation will halve if you halve the wavenumber.
C) When the frequency of the light is doubled, its energy will double.
Explanation:
The function for the light frequency is given as
The energy supplied to each electron is doubled by halving the wavelength, nearly doubling its kinetic energy by two after it is free from the metal. It is important to remember that for a given period of time, the number of electrons ejected will remain constant.
Cheers
Answer:
The question is somewhat vague in that acceleration is not exactly defined:
Usually a = (v2 - v1) / t which would imply that
a = 32 / g = 32 / 9.8 = 3.27 the acceleration due to change in speed of the rocket
One can also say that the astronaut experiences an acceleration of 9.8 m/s^2 just by being motionless on the surface of the earth.
Then a = (32 - 9.8) / 9.8 = 2.27 due to the acceleration of the rocket
If we assume the first condition then
F = 65 kg * 3.27 * 9.8 m/s^2 = 2083 N