Answer:
60m/s
Explanation:
initial energy = final energy
g.p.e = k.e
k.e = 0.5 × mass × velocity²
g.p.e = 990000J as per Question
990000Nm = 0.5 × 550 × V²
V² = 3600
V = 60m/s
Answer:
F = 2π I R B
Explanation:
The magnetic force is described by the equation.
F = q v x B = i L x B
Where i is the current, L is a vector that points in the direction of the current (length) and B is the magnetic field.
This equation can be used in scalar form and the direction of the force found by the right hand ruler, the thumb goes in the direction of L, the fingers extended in the direction of B and the palm of the hand indicates the direction of the force if the load is positive
F = i L B sin θ
In this case the wire is in the xy plane and the z-axis field whereby they are perpendicular, θ = 90º and sin 90 = 1
F = i L B
The loop length is
L = 2π R
F = i 2π R B
F = 2π I R B
The force is in the loop
C. The strong nuclear force is only attractive and acts over shorter distances
Answer:
Explanation:
If the dragster attains the speed equal to that of the car which is moving with constant velocity of v₀ , before the two close in contact with each othe , there will not be collision .
So the dragster starting from rest , must attain the velocity v₀ in the maximum time given that is tmax .
v = u + a t
v₀ = 0 + a tmax
tmax = v₀ / a
The value of tmax is v₀ / a .
Answer:
False you dont repaint your hamster.
Explanation:
LOL