Answer:
Muscular endurance is the most important factor in performing the activities of daily living.
Answer:
Vi = 0.055 m³ = 55 L
Explanation:
From first Law of Thermodynamics, we know that:
ΔQ = ΔU + W
where,
ΔQ = Heat absorbed by the system = 52.5 J
ΔU = Change in Internal Energy = -102.5 J (negative sign shows decrease in internal energy of the system)
W = Work Done in Expansion by the system = ?
Therefore,
52.5 J = - 102.5 J + W
W = 52.5 J + 102.5 J
W = 155 J
Now, the work done in a constant pressure condition is given by:
W = PΔV
W = P(Vf - Vi)
where,
P = Constant Pressure = (0.5 atm)(101325 Pa/1 atm) = 50662.5 Pa
Vf = Final Volume of System = (58 L)(0.001 m³/1 L) = 0.058 m³
Vi = Initial Volume of System = ?
Therefore,
155 J = (50662.5 Pa)(0.058 m³ - Vi)
Vi = 0.058 m³ - 155 J/50662.5 Pa
Vi = 0.058 m³ - 0.003 m³
<u>Vi = 0.055 m³ = 55 L</u>
Answer:
Final speed of boat + man is 1.66 m/s
Explanation:
As we know that there is no friction on the system or there is no external force on this system
So here we can use momentum conservation here

so we have
m = 85 kg
M = 135 kg
v = 4.30 m/s
now we have


Answer:
.D)The Vector sum of the linear momenta of the fragments must be zero.
Explanation:
.D)The Vector sum of the linear momenta of the fragments must be zero.
This statement is true. This is so because no external force is acting on the masses. The motion is created by internal force so momentum of fragments will be conserved.
A) this statement is false because kinetic energy was zero in the beginning ( the bomb was stationary in the beginning )
B ) This statement is false because it violates the law of conservation of momentum .( it does not violates only when all the fragments have equal mass )
C ) This statement is zero because kinetic energy is not a vector quantity so two kinetic energy when added can not sum up to zero.
Answer:

Explanation:
Mass of the losing player with its all equipment is given as
M = 86 kg
Net force applied on him by another player is given as
F = 780 N
also we know that acceleration of the losing player is given as

now by Newton's 2nd law we will have



