Answer:
- 0.07 °C
Explanation:
At constant pressure and number of moles, Using Charle's law
Given ,
V₁ = 439 mL = 0.439 L ( 1 L = 0.001 mL )
V₂ = 0.378 L
T₁ = 317.15 K
T₂ = ?
Using above equation as:
The conversion of T(K) to T( °C) is shown below:
T( °C) = T(K) - 273.15
So, <u>T = 273.08 - 273.15 °C = - 0.07 °C</u>
Since f is positive I would say f
Answer:
0.2024 M
Explanation:
For the decomposition reactio given, let's do an equilibrium chart. Let's call the initial concentration of NH₃ as C:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
C 0 0 Initial
-2x +x +3x Reacts (stoichiometry is 1:1:3)
C - 2x x 3x Equilibrium
3x = 0.252
x = 0.084 M
The equilibrium constant (Kc) is the multiplication of the concentrations of the products elevated by their coefficients, divided by the multiplication of reactants concentrations elevated by their coefficients.
Kc = ([H₂]³*[N₂])/([NH₃]²)
4.50 = [(0.252)³*(0.084)]/(C - 2*0.084)²
4.50 = 0.00533/(C - 0.168)²
4.50 = 0.00533/(C² - 0.336C + 0.028224)
4.50C² - 1.512C + 0.127008 = 0.00533
4.50C² - 1.512C + 0.121678 = 0
Solving the equation by a graphic calculator, for C > 0.168
C = 0.2024 M
it allows plants to survive and continue to reproduce