Answer:
Explanation:
The period law state that when elements are listed in order of their atomic numbers, the elements fall into recurring groups, so that there is a recurrence of similar properties at regular intervals.
Na and K in the periodic table fall into the same group, this is because they both have one electrons in their outermost shell.
Na 11 -1s2 2s2 2p6 3s1
K 19 - 1s2 2s2 2p6 3s2 3p6 4s1
They share similar chemical and physical properties. Na and K are very reactive metals, they can loose/donate their outermost electron to non metals in other to attain stable octet state.
The form ionic compound when they react with non metals.
Answer:
1.2029 J/g.°C
Explanation:
Given data:
Specific heat capacity of titanium = 0.523 J/g.°C
Specific heat capacity of 2.3 gram of titanium = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
1 g of titanium have 0.523 J/g.°C specific heat capacity
2.3 × 0.523 J/g.°C
1.2029 J/g.°C
Answer:
Source, processing and distribution are the components of water system.
Explanation:
There are three parts of water system i. e. the source, the processing and distribution. Water is extracted from a source such as underground water, lake or river etc. After extraction this water is transported to the processing unit where it can be purified and after purification it is distributed to all places where it is needed. Potential energy is a form of energy that flows through this water system because the water is extracted from a depth and we know that depth and height refers to potential energy.
<span>0.310 moles
First, look up the atomic weights of the elements involved.
Atomic weight carbon = 12.0107
Atomic weight hydrogen = 1.00794
Atomic weight sulfur = 32.065
Molar mass (C3H5)2S = 6 * 12.0107 + 10 * 1.00794 + 32.065
= 114.2086 g/mol
Moles (C3H5)2S = 35.4 g / 114.2086 g/mol = 0.309959145 mol
Since there's just one sulfur atom per (C3H5)2S molecule, the number of moles of sulfur will match the number of moles of (C3H5)2S which is 0.310 when rounded to 3 significant digits.</span>
Answer:
H = m c ΔT
89.6 J = (20.0 g) × c × (40.0 - 30.0)°C
Specific heat of iron, c = 89.6 / [20.0 × (40.0 - 30.0)] J/(g°C) = 0.448 J/(g°C)