The answer you are looking for is A. the average atomic mass hope this helped have a nice day :)
Answer:
The reaction is exothermic (option 4)
Explanation:
P4 + 5O2 → P4O10 + 712 kcal
In chemical reactions heat can be absorbed or released:
⇒in the first case, when heat is absorbed, this is called an endothermic reaction. The products have more energy than the reactants. The reaction requires or absorbs energy from it's surroundings. That means that in this reaction energy , in the form of heat, will be absorbed by the reactants.
⇒ when heat is released, this is called an exothermic reaction. The reactants have more energy than the products. The reaction gives or releases energy to it's surroundings. That means that in this reaction energy , in the form of heat, will be released by the reactants.
in the case of P4 + 5O2 → P4O10 + 712 kcal
We notice that on the right side, which is the product side, there is a positive amount of energy. This means that the energy is released by the the reactants, in this reaction. <u>The reaction is exothermic.</u>
.
The mass of NaCl needed for the reaction is 91.61 g
We'll begin by calculating the number of mole of F₂ that reacted.
- Gas constant (R) = 0.0821 atm.L/Kmol
PV = nRT
1.5 × 12 = n × 0.0821 × 280
18 = n × 22.988
Divide both side by 22.988
n = 18 / 22.988
n = 0.783 mole
Next, we shall determine the mole of NaCl needed for the reaction.
F₂ + 2NaCl —> Cl₂ + 2NaF
From the balanced equation above,
1 mole of F₂ reacted with 2 moles of NaCl.
Therefore,
0.783 mole F₂ will react with = 0.783 × 2 = 1.566 moles of NaCl.
Finally, we shall determine the mass of 1.566 moles of NaCl.
- Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass = mole × molar mass
Mass of NaCl = 1.566 × 58.5
Mass of NaCl = 91.61 g
Therefore, the mass of NaCl needed for the reaction is 91.61 g
Learn more about stiochoimetry: brainly.com/question/25830314
Answer;
C. unchanged rock and mineral fragments
Explanation;
A large number of landforms and features found in desert environments are formed as the result of weathering. Weathering is defined as the breakdown and deposition of rocks by weather acting in situ
The two main types of weathering which occur in deserts are Mechanical weathering, which is the disintegration of a rock by mechanical forces that do not change the rock's chemical composition and Chemical weathering, which is the decomposition of a rock by the alteration of its chemical composition.
By contrast much of the weathered debris in deserts has resulted from mechanical weathering. Chemical weathering, however, is not completely absent in deserts. Over long time spans,clays and thin soils do form.
Answer:
Magnesium chloride/Molar mass
95.211 g/mol
Explanation: