1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetradugi [14.3K]
3 years ago
10

⚠️⚠️⚠️⚠️ANSWER ASAP!!! ⚠️⚠️⚠️⚠️

Mathematics
1 answer:
Anon25 [30]3 years ago
3 0

Answer:

0.08

Step-by-step explanation:

5^-2 x 2

1/25 or 0.04 x2

0.04 x 2= 0.08 or 2/25.

You might be interested in
Solve these recurrence relations together with the initial conditions given. a) an= an−1+6an−2 for n ≥ 2, a0= 3, a1= 6 b) an= 7a
8_murik_8 [283]

Answer:

  • a) 3/5·((-2)^n + 4·3^n)
  • b) 3·2^n - 5^n
  • c) 3·2^n + 4^n
  • d) 4 - 3 n
  • e) 2 + 3·(-1)^n
  • f) (-3)^n·(3 - 2n)
  • g) ((-2 - √19)^n·(-6 + √19) + (-2 + √19)^n·(6 + √19))/√19

Step-by-step explanation:

These homogeneous recurrence relations of degree 2 have one of two solutions. Problems a, b, c, e, g have one solution; problems d and f have a slightly different solution. The solution method is similar, up to a point.

If there is a solution of the form a[n]=r^n, then it will satisfy ...

  r^n=c_1\cdot r^{n-1}+c_2\cdot r^{n-2}

Rearranging and dividing by r^{n-2}, we get the quadratic ...

  r^2-c_1r-c_2=0

The quadratic formula tells us values of r that satisfy this are ...

  r=\dfrac{c_1\pm\sqrt{c_1^2+4c_2}}{2}

We can call these values of r by the names r₁ and r₂.

Then, for some coefficients p and q, the solution to the recurrence relation is ...

  a[n]=pr_1^n+qr_2^n

We can find p and q by solving the initial condition equations:

\left[\begin{array}{cc}1&1\\r_1&r_2\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right]

These have the solution ...

p=\dfrac{a[0]r_2-a[1]}{r_2-r_1}\\\\q=\dfrac{a[1]-a[0]r_1}{r_2-r_1}

_____

Using these formulas on the first recurrence relation, we get ...

a)

c_1=1,\ c_2=6,\ a[0]=3,\ a[1]=6\\\\r_1=\dfrac{1+\sqrt{1^2+4\cdot 6}}{2}=3,\ r_2=\dfrac{1-\sqrt{1^2+4\cdot 6}}{2}=-2\\\\p=\dfrac{3(-2)-6}{-5}=\dfrac{12}{5},\ q=\dfrac{6-3(3)}{-5}=\dfrac{3}{5}\\\\a[n]=\dfrac{3}{5}(-2)^n+\dfrac{12}{5}3^n

__

The rest of (b), (c), (e), (g) are solved in exactly the same way. A spreadsheet or graphing calculator can ease the process of finding the roots and coefficients for the given recurrence constants. (It's a matter of plugging in the numbers and doing the arithmetic.)

_____

For problems (d) and (f), the quadratic has one root with multiplicity 2. So, the formulas for p and q don't work and we must do something different. The generic solution in this case is ...

  a[n]=(p+qn)r^n

The initial condition equations are now ...

\left[\begin{array}{cc}1&0\\r&r\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right]

and the solutions for p and q are ...

p=a[0]\\\\q=\dfrac{a[1]-a[0]r}{r}

__

Using these formulas on problem (d), we get ...

d)

c_1=2,\ c_2=-1,\ a[0]=4,\ a[1]=1\\\\r=\dfrac{2+\sqrt{2^2+4(-1)}}{2}=1\\\\p=4,\ q=\dfrac{1-4(1)}{1}=-3\\\\a[n]=4-3n

__

And for problem (f), we get ...

f)

c_1=-6,\ c_2=-9,\ a[0]=3,\ a[1]=-3\\\\r=\dfrac{-6+\sqrt{6^2+4(-9)}}{2}=-3\\\\p=3,\ q=\dfrac{-3-3(-3)}{-3}=-2\\\\a[n]=(3-2n)(-3)^n

_____

<em>Comment on problem g</em>

Yes, the bases of the exponential terms are conjugate irrational numbers. When the terms are evaluated, they do resolve to rational numbers.

6 0
3 years ago
What is the positive slope of the asymptote of the hyperbola?The positive slope of the asymptote is
SVETLANKA909090 [29]

Answer:

1

Step-by-step explanation:

on edge

7 0
3 years ago
A population of butterflies grows in such a way that each generation is simply 1.5 times the previous generation. There were 350
wlad13 [49]

Answer:

517,262

Step-by-step explanation:

A population of butterflies grow in such a way that each generation is simply 1.5 times the previous generation. There were 350 butterflies in the first generation, how many will there be by the 19th generation?

----------------

Ans: (1.5)^18 * 350 = 517,262

4 0
3 years ago
Read 2 more answers
Los lados de un triángulo rectángulo tienen por medida tres números enteros consecutivos. Calcula los lados del triángulo.
elixir [45]

Answer:

Los lados del triángulo rectángulo miden 3, 4 y 5, respectivamente.

Step-by-step explanation:

Un triángulo rectángulo puede ser descrito mediante el teorema de Pitágoras, para el caso de tres lados representando tres números enteros consecutivos, tenemos que:

(n+2)^{2} = n^{2} + (n+1)^{2} (1)

Donde n es un número natural.

A continuación, expandimos la expresión y resolvemos:

n^{2}+4\cdot n +4 = n^{2} + n^{2} +2\cdot n + 1

n^{2}-2\cdot n -3 = 0

(n -3) \cdot (n+1) = 0

La única solución factible es n = 3. En consecuencia, los lados del triángulo rectángulo miden 3, 4 y 5, respectivamente.

4 0
3 years ago
How do I solve this equation?
jek_recluse [69]
The answer is 7 
7^ ⁴ = 49 
7 0
3 years ago
Other questions:
  • If ƒ(x) varies directly with x and ƒ(x) = 32 when x = -8, then what is ƒ(x) when x = 4?
    14·1 answer
  • If no vertical line intersects the graph of a relation in more than one point, then the relation is a function.
    10·1 answer
  • Helppppppp on 3 4 please
    9·1 answer
  • A(4,2) B(1,4) C(6,5)
    10·1 answer
  • For the following inequality, indicate whether the boundary line should be dashed or solid.
    15·2 answers
  • Please help me on this math question
    5·1 answer
  • At thanksgiving mr Jones overcooked The turkey so all but 4/5 of you have been thrown away the eight people at dinner that night
    13·1 answer
  • Please help brainly!
    9·1 answer
  • PLEASE HELP ASAP, GIVING BRAINLIEST TO CORRECT ANSWER
    12·2 answers
  • To solve 1/3÷9, James thinks of dividing a loaf of bread into 3 equal parts, dividing one of those parts into 9 equal slices, an
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!