1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
butalik [34]
3 years ago
11

Given parallelogram SNOW, diagonals SO and NW intersect at D.

Mathematics
1 answer:
Reil [10]3 years ago
4 0

Answer:

The length of SO is 46 units

Step-by-step explanation:

<em>In a parallelogram, </em><em>diagonals bisect each other,</em><em> which means meet each other in their mid-point</em>

∵ SNOW is a parallelogram

∵ SO and NW are diagonals

∵ SO ∩ NW at point D

→ That means D is the mid-point of SO and NW

∴ D is the mid-point of SO and NW

∵ D is the mid-point of SO

→ That means D divide SO into two equal parts SD and DO

∴ SD = DO

∵ SD = 9x + 5

∵ DO = 13x - 3

→ Equate them

∴ 13x - 3 = 9x + 5

→ Subtract 9x from both sides

∵ 13x - 9x - 3 = 9x - 9x + 5

∴ 4x - 3 = 5

→ Add 3 to both sides

∵ 4x - 3 + 3 = 5 + 3

∴ 4x = 8

→ Divide both sides by 4

∴ x = 2

→ To find the length of SO substitute the value os x in SD and DO

∵ SO = SD + DO

∵ SD = 9(2) + 5 = 18 + 5 = 23

∵ DO = 13(2) - 3 = 26 - 3 = 23

∴ SO = 23 + 23 = 46

∴ The length of SO is 46 units

You might be interested in
Find the measure of one interior angle of a regular 21-gon.
ExtremeBDS [4]
C step-by-step the coordinate of that is pretty simple to say but hard at the same time
5 0
2 years ago
Read 2 more answers
Choose all pairs of points that are reflections of each other across both axes.
soldi70 [24.7K]

Answer:

c

Step-by-step explanation:

6 0
3 years ago
What is the solution of √x-5 = x-11
PIT_PIT [208]
Hey!


To solve x in this equation we must first add five to both sides to get \sqrt{x} on its own.

<em>Original Equation :</em>
\sqrt{x} - 5 = x - 11

<em>New Equation {Added 5 to Both Sides} :</em>
\sqrt{x} =x-6

Now we must square both sides of the equation.

<em>Old Equation :</em>
\sqrt{x} =x-6

<em>New Equation {Changed by Squaring Both Sides} :</em>
x= x^{2} -12x+36

And now we must solve the new equation.

Step 1 - Switch sides
x^{2} -12x+36=x

Step 2 - Subtract x from both sides
x^{2} -12x+36-x=x-x

Step 3 - Simplify
x^{2} -13x+36=0

Now we need to solve the rest of the equation using the quadratic formula.

\frac{-(-13)+ \sqrt{(-13) ^{2}-4*1*36 } }{2*1}

{13+ \sqrt{(-13)^{2}-4*1*36 }=13+ \sqrt{25}

\frac{13+ \sqrt{25}}{2}

\sqrt{25}=5

\frac{13+5}{2}

\frac{18}{2}

9

\frac{-(-13)- \sqrt{(-13) ^{2} -4*1*36} }{2*1}

4

<em>So, this means that in the equation \sqrt{x} -5=x-11,</em>  x = 9  <em>and  </em>x = 4.

Hope this helps!


- Lindsey Frazier ♥
4 0
3 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
What are these rounded to the nearest tenth help <br> 1)1017.36<br> 2)1139.82
ziro4ka [17]

Answer:

1. 1017.4

2. 1139.8

Step-by-step explanation:

Those the answers

8 0
3 years ago
Read 2 more answers
Other questions:
  • The ratio of green marbles to Yellow marbles in Diego bag is equal to 2 to 5 what percent of the marbles in the bags are green m
    15·2 answers
  • Find polar coordinates of the point that had rectangular coordinates
    13·1 answer
  • Need help in these to math problems
    11·1 answer
  • Enya is building a storage cupboard in the shape of a rectangular prism. The rectangular prism has a square base with side lengt
    11·1 answer
  • What is cos theta when sin theta = sqrt 2/3
    14·1 answer
  • Find the slope of the line graphed below.
    8·2 answers
  • My question is asking me..."A sphere and a cylinder have the same radius and height. The volume of the cylinder is 18 centimeter
    7·1 answer
  • Factor completely 2n + 13n + 15
    7·2 answers
  • Which if the following steps were applied to ABCD to obtain A'B'C'D'
    10·1 answer
  • What is the scale factor of a drawing if the scale is 1 inch equals 4 feet
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!