The total quantity of heat evolved in converting the steam to ice is determined as -12,928.68 J.
<h3>
Heat evolved in converting the steam to ice</h3>
The total heat evolved is calculated as follows;
Q(tot) = Q1(steam to boiling point) + Q2(boiling point to ice) +Q3(freezing to -42 ⁰C)
where;
Q = = mcΔθ
where;
- m is mass, (mass of water = 18 g/mol)
- c is specific heat capacity,
- Δθ is change in temperature
Q(tot) = 2(18)(2.01)(100 - 135) + 2(18)(2.01)(0 - 100) + 2(18)(2.09)(-42 - 0)
Q(tot) = -12,928.68 J
Thus, the total quantity of heat evolved in converting the steam to ice is determined as -12,928.68 J.
Learn more about heat here: brainly.com/question/13439286
#SPJ1
Answer:
41.67 mol
Explanation:
1 Litre of water = 1000g
Mole = mass / molar mass
Mass of 1 L of water = 1000 g
Molar mass of water (H2O) :
(H = 1, O = 16)
H2O = (1 * 2) + 16 = (2 + 16) = 18g/mol
Amount of water consumed = (3/4) of 1 litre
= (3/4) * 1000g
= 750g
Therefore mass of water consumed = 750g
Mole = 750g / 18g/mol
Mole of water consumed = 41.6666
= 41.67 mol
Answer:
-250.3kJ
Explanation:
Based in the reactions and using -<em>Hess's law-</em>:
(1) P₄(s) + 6 Cl₂(g) → 4PCl₃(g) ΔH₁ = -4439kJ
(2) 4PCl₅(g) → P₄(s) + 10Cl₂ ΔH₂ = 3438kJ
The sum of (1) + (2) is:
4PCl₅(g) → 4PCl₃(g) + 4 Cl₂ ΔH = -4439kJ + 3438kJ = -1001kJ
Dividing this reaction in 4:
PCl₅(g) → PCl₃(g) + Cl₂ ΔH = -1001kJ / 4 = <em>-250.3kJ</em>
Explanation:
A low-pressure area, or "low", is a region where the atmospheric pressure at sea level is below that of surrounding locations. Low-pressure systems form under areas of wind divergence that occur in upper levels of the troposphere.
It would 47.7 because you would have to both minus the number together.