Answer:
heat is the movement from areas of <u>high </u>temperature to areas of <u>low </u>temperature
<h2>Answer : Political Map</h2><h3>Explanation :</h3>
A political map is a kind of map which contains a north arrow, key and a map scale.
This kind of map usually indicates the governmental boundaries of countries, states, or any counties,
And, they give information about the location of major cities, also they usually include significant bodies of water.
b) It is based on atomic properties as alkali metals requires 7 more electrons to complete their outer orbit. And they try to give those electrons to other elements to obtain noble gas configuration.
Noble gases are the gases which do not react easily with anything. They are also called as Inert gases, and belongs to group 18 of the periodic table.
Alkali metals are the substances which are found in Group I of a periodic table. Mostly the elements which are present are:
Properties of alkali metals are: Soft, shiny reactive metals. They are soft enough to cut with knife. Metals react with water and air quickly and gets tarnish, so pure metals are stored in container by dipping them in oil to prevent oxidation.
To know more about Alkali metals, refer to this link:
brainly.com/question/18153051
#SPJ4
There are 5 significant figures in the following number. All of the numbers essentially are significant.
Answer:
pH=11.
Explanation:
Hello!
In this case, since the data is not given, it is possible to use a similar problem like:
"An analytical chemist is titrating 185.0 mL of a 0.7500 M solution of ethylamine(C2HNH2) with a 0.4800 M solution of HNO3.ThepK,of ethylamine is 3.19. Calculate the pH of the base solution after the chemist has added 114.4 mL of the HNO3 solution to it"
Thus, for the reaction:

Tt is possible to compute the remaining moles of ethylamine via the following subtraction:

Thus, the concentration of ethylamine in solution is:
![[ethylamine]=\frac{0.0816mol}{0.1850L+0.1144L}=0.2725M](https://tex.z-dn.net/?f=%5Bethylamine%5D%3D%5Cfrac%7B0.0816mol%7D%7B0.1850L%2B0.1144L%7D%3D0.2725M)
Now, we can also infer that some salt is formed, and has the following concentration:
![[salt]=\frac{0.0549mol}{0.1850L+0.1144L}=0.1834M](https://tex.z-dn.net/?f=%5Bsalt%5D%3D%5Cfrac%7B0.0549mol%7D%7B0.1850L%2B0.1144L%7D%3D0.1834M)
Therefore, we can use the Henderson-Hasselbach equation to compute the resulting pOH first:
![pOH=pKb+log(\frac{[salt]}{[base]} )\\\\pOH=3.19+log(\frac{0.1834M}{0.2725M})\\\\pOH=3.0](https://tex.z-dn.net/?f=pOH%3DpKb%2Blog%28%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bbase%5D%7D%20%29%5C%5C%5C%5CpOH%3D3.19%2Blog%28%5Cfrac%7B0.1834M%7D%7B0.2725M%7D%29%5C%5C%5C%5CpOH%3D3.0)
Finally, the pH turns out to be:

NOTE: keep in mind that if you have different values, you can just change them and follow the very same process here.
Best regards!