Answer:
The molecules move slower than the temp of 50°c and their average kinetic energy decreases.
Explanation:
kinetic energy cannot increase as temperature is reduced. molecules will still move with reduced motion.
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
Answer:
C4H8
Explanation:
First find the molar mass of CH2;
2(1.01) + 1(12.01) = 14.03g
Now divide the molar mass of the compound by the molar mass of CH2;
56g/14.03g = 3.9914 Round to nearest whole number = 4
Multiply CH2 by 4 to get the molecular formula;
CH2* 4 = C4H8
Answer:
eletrons
Explanation:
eletrons is not in the neuclus its around it