1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OverLord2011 [107]
3 years ago
10

How does the thickness of the lens affects its focal length plz ans this i will mark as brainliest

Physics
1 answer:
Oksanka [162]3 years ago
5 0

Hello! :)

The focal length of the lens tells you how far away from the lens a focused image is created, if light rays approaching the lens are parallel. A lens with more “bending power” has a shorter focal length, because it alters the path of the light rays more effectively than a weaker lens. Most of the time, you can treat a lens as being thin and ignore any effects from the thickness, because the thickness of the lens is much less than the focal length. But for thicker lenses, how thick they are does make a difference, and in general, results in a shorter focal length.

Hope I helped and didn’t answer too late!

Good luck and stay COOL!

~ Destiny ^_^

You might be interested in
An alkane has molecular weight 86. Write its molecular formula. What will be its physical state?
Brums [2.3K]

C6H14

Gaseous state

it's unsaturated hence gaseous

8 0
3 years ago
Two charges, each of 2.9 microC are placed at two corners of a square 50cm on a side, If the charges are on one side of the squa
anyanavicka [17]

Answer:

The magnitude of the electric field and direction of electric field are 146.03\times10^{3}\ N/C and 75.36°.

Explanation:

Given that,

First charge q_{1}= 2.9\mu C

Second chargeq_{2}= 2.9\mu C

Distance between two corners r= 50 cm

We need to calculate the electric field due to other charges at one corner

For E₁

Using formula of electric field

E_{1}=\dfrac{kq}{r'^2}

Put the value into the formula

E_{1}=\dfrac{9\times10^{9}\times2.9\times10^{-6}}{(50\sqrt{2}\times10^{-2})^2}

E_{1}=52200=52.2\times10^{3}\ N/C

For E₂,

Using formula of electric field

E_{1}=\dfrac{kq}{r^2}

Put the value into the formula

E_{2}=\dfrac{9\times10^{9}\times2.9\times10^{-6}}{(50\times10^{-2})^2}

E_{2}=104400=104.4\times10^{3}\ N/C

We need to calculate the horizontal electric field

E_{x}=E_{1}\cos\theta

E_{x}=52.2\times10^{3}\times\cos45

E_{x}=36910.97=36.9\times10^{3}\ N/C

We need to calculate the vertical electric field

E_{y}=E_{2}+E_{1}\sin\theta

E_{y}=104.4\times10^{3}+52.2\times10^{3}\sin45

E_{y}=141310.97=141.3\times10^{3}\ N/C

We need to calculate the net electric field

E_{net}=\sqrt{E_{x}^2+E_{y}^2}

Put the value into the formula

E_{net}=\sqrt{(36.9\times10^{3})^2+(141.3\times10^{3})^2}

E_{net}=146038.69\ N/C

E_{net}=146.03\times10^{3}\ N/C

We need to calculate the direction of electric field

Using formula of direction

\tan\theta=\dfrac{141.3\times10^{3}}{36.9\times10^{3}}

\theta=\tan^{-1}(\dfrac{141.3\times10^{3}}{36.9\times10^{3}})

\theta=75.36^{\circ}

Hence, The magnitude of the electric field and direction of electric field are 146.03\times10^{3}\ N/C and 75.36°.

4 0
3 years ago
The next four questions refer to the situation below.
Anna11 [10]

Answer:

 t_{out} = \frac{v_s - v_r}{v_s+v_r} t_{in},      t_{out} = \frac{D}{v_s +v_r}

Explanation:

This in a relative velocity exercise in one dimension,

let's start with the swimmer going downstream

its speed is

         v_{sg 1} = v_{sr} + v_{rg}

The subscripts are s for the swimmer, r for the river and g for the Earth

with the velocity constant we can use the relations of uniform motion

           v_{sg1} = D / t_{out}

           D = v_{sg1}  t_{out}

now let's analyze when the swimmer turns around and returns to the starting point

        v_{sg 2} =  v_{sr}  - v_{rg}

         v_{sg 2} = D / t_{in}

         D = v_{sg 2}  t_{in}

with the distance is the same we can equalize

           v_{sg1} t_{out} = v_{sg2} t_{in}

          t_{out} =  t_{in}

           t_{out} = \frac{v_s - v_r}{v_s+v_r} t_{in}

This must be the answer since the return time is known. If you want to delete this time

            t_{in}= D / v_{sg2}

we substitute

            t_{out} = \frac{v_s - v_r}{v_s+v_r} ()

            t_{out} = \frac{D}{v_s +v_r}

7 0
2 years ago
Cual de las escalas de temperatura es la mas antigua
IrinaVladis [17]

Answer:

the translation I got for this question is

Which of the temperature scales is the oldest?

Explanation:

and i searched for it and got this=

Fahrenheit scale

6 0
2 years ago
What is the reaction force if a girl pulls on a cow?
Papessa [141]
Answer : B) The cow pulls back on the girl.

From newton’s third law we know that every action has a reaction force pushing back. So when the girl pulls on a cow, the cow is pulling back on her.
8 0
3 years ago
Other questions:
  • I need help with the following three physics problems please!
    14·1 answer
  • A motorcycle of mass 100 kilograms slowly rolls off the edge of a cliff and falls for three seconds before reaching the bottom o
    11·1 answer
  • What is the unit of pressure? Why is it called a derived unit?<br>Why has SI system​
    14·1 answer
  • What is matter? explain and give example
    14·1 answer
  • Same object differs in water than in air?
    8·1 answer
  • 4. What does doubling the voltage do to the strength of the electromagnet?​
    10·2 answers
  • Ummmm ya girl needs help
    10·2 answers
  • How do magnet effect materials that are not magnets
    9·1 answer
  • 63. Which of the following types of validity is estab-
    13·1 answer
  • Which property do the elements in each column of the representative elements series of the periodic table have in common?(1 poin
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!