The shades are very different
The work done by a rotating object can be calculated by the formula Work = Torque * angle.
This is analog to the work done by the linear motion where torque is analog to force and angle is analog to distance. This is Work = Force * distance.
An example will help you. Say that you want to calculate the work made by an engine that rotates a propeller with a torque of 1000 Newton*meter over 50 revolution.
The formula is Work = torque * angle.
Torque = 1000 N*m
Angle = [50 revolutions] * [2π radians/revolution] = 100π radians
=> Work = [1000 N*m] * [100π radians] = 100000π Joules ≈ 314159 Joules of work.
Okay, haven't done physics in years, let's see if I remember this.
So Coulomb's Law states that

so if we double the charge on

and double the distance to

we plug these into the equation to find
<span>

</span>
So we see the new force is exactly 1/2 of the old force so your answer should be

if I can remember my physics correctly.
Answer:
a) D_ total = 18.54 m, b) v = 6.55 m / s
Explanation:
In this exercise we must find the displacement of the player.
a) Let's start with the initial displacement, d = 8 m at a 45º angle, use trigonometry to find the components
sin 45 = y₁ / d
cos 45 = x₁ / d
y₁ = d sin 45
x₁ = d sin 45
y₁ = 8 sin 45 = 5,657 m
x₁ = 8 cos 45 = 5,657 m
The second offset is d₂ = 12m at 90 of the 50 yard
y₂ = 12 m
x₂ = 0
total displacement
y_total = y₁ + y₂
y_total = 5,657 + 12
y_total = 17,657 m
x_total = x₁ + x₂
x_total = 5,657 + 0
x_total = 5,657 m
D_total = 17.657 i^+ 5.657 j^ m
D_total = Ra (17.657 2 + 5.657 2)
D_ total = 18.54 m
b) the average speed is requested, which is the offset carried out in the time used
v = Δx /Δt
the distance traveled using the pythagorean theorem is
r = √ (d1² + d2²)
r = √ (8² + 12²)
r = 14.42 m
The time used for this shredding is
t = t1 + t2
t = 1 + 1.2
t = 2.2 s
let's calculate the average speed
v = 14.42 / 2.2
v = 6.55 m / s