Answer:
1) 2.054 x 10⁻⁴ mol/L.
2) Decreasing the temperature will increase the solubilty of O₂ gas in water.
Explanation:
1) The solubility of O₂ gas in water:
- We cam calculate the solubility of O₂ in water using Henry's law: <em>Cgas = K P</em>,
- where, Cgas is the solubility if gas,
- K is henry's law constant (K for O₂ at 25 ̊C is 1.3 x 10⁻³ mol/l atm),
- P is the partial pressure of O₂ (P = 120 torr / 760 = 0.158 atm).
- Cgas = K P = (1.3 x 10⁻³ mol/l atm) (0.158 atm) = 2.054 x 10⁻⁴ mol/L.
2) The effect of decreasing temperature on the solubility O₂ gas in water:
- Decreasing the temperature will increase the solubilty of O₂ gas in water.
- When the temperature increases, the solubility of O₂ gas in water will decrease because the increase in T will increase the kinetic energy of gas particles and increase its motion that will break intermolecular bonds and escape from solution.
- Decreasing the temperature will increase the solubility of O₂ gas in water will because the kinetic energy of gas particles will decrease and limit its motion that can not break the intermolecular bonds and increase the solubility of O₂ gas.
CuCl2+F2—>CuF2+Cl2.
This is a single replacement because there is one compound and one element. Picture Cu as ‘A’ Cl2 as ‘B’ and F2 as ‘C.’ So AB+C—>AC+B. A and B “broke up” and that resulted to A going with C to create the compound CuF2 leaving Cl2 alone.
Answer: B
Explanation:
According to Ohm's Law, the answer is B.
Ohm's Law states that power is equal to volume x current.
If volume x current equals power, that means they are both 50% of power.
Ohm's Law:
power = voltage x current
current = voltage x power
voltage = power x current
I hope this answer helped.
Answer:
9.63 Km is the equivalent to 9,630 m.
9.63 Km is the equivalent to 9,630 m. TRUE