Answer:
The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.
Explanation:
We know that,
Mass of electron 
Rest mass energy for electron = 0.511 Mev
(a). The energy required to accelerate an electron from 0.500c to 0.900c Mev
Using formula of rest,



(b). The energy required to accelerate an electron from 0.900c to 0.942c Mev
Using formula of rest,



Hence, The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.
IBR is the thermal decomposition of iodine(I) bromide to produce iodine and
bromine. This reaction takes place at a temperature of over 40,5°C and is written as:
<span>2IBr ⇄ I2 + Br2
</span>
Equilibrium is a state of dynamic balance where the ratio of the product and reactant concentrations is constant.<span> You can calculate the equilibrium concentration if you know the equilibrium constant Kc (Kc=I^2*Br^2/IBR^2) and the initial concentration for the reaction. The initial concentration is obtained from ICE Table.</span>
The car is accelerating at 3 m/s² in the positive direction (to the right). By Newton's second law, the net force on the car in this direction is
∑ F = F[a] - F[f] - F[air] = ma
3100 N - 200 N - F[air] = (650 kg) (3 m/s²)
Solve for F[air] :
F[air] = 3100 N - 200 N - (650 kg) (3 m/s²)
F[air] = 3100 N - 200 N - 1950 N
F[air] = 950 N
Answer:
Explanation:
recall that power is energy carried out or work done per time
P=W/t
P=2*10^6*35
t=6*60=420S
W=Energy
E=2*10^6*35*360S
E=25200000000
Energy stored by water from rest is called potential energy. Since the water is falling from a height , we calculate potential energy as thus
E=M*g*h
Assume that the water intakes are effectively 175 m above the electric generators. How much water must pass through the generators to power 2 million 35-W Las Vegas light bulbs for 6.0 minutes?
M=mass of water
g=acceleration due to gravity 9.81m/s^2
h=height ,175m
25200000000=M*9.81*175
M=
M=1716.75kg
1. Cenozoic ERA
2. Mesozoic ERA
3. Paleozoic ERA