Answer:
H vaporization = 100.0788 kJ/mol
Explanation:
Use clausius clapyron's adaptation for the calculation of Hvap as:

Where,
P₂ and P₁ are the pressure at Temperature T₂ and T₁ respectively.
R is the gas constant.
T₂ = 823°C
T₁ = 633°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So, the temperature,
T₂ = (823 + 273.15) K = 1096.15 K
T₁ = (633 + 273.15) K = 906.15 K
P₂ = 400.0 torr , P₁ = 40.0 torr
R = 8.314 J/K.mol
Applying in the formula to calculate heat of vaporization as:

Solving for heat of vaporization, we get:
H vaporization = 100078.823 J/mol
Also, 1 J = 10⁻³ kJ
So,
<u>H vaporization = 100.0788 kJ/mol</u>
We're millions of miles away from mars
Answer:
example two
Explanation:
They have the greatest masses and close proximety relative to the rest, (If you have two black holes each with a solar mass only 1 mile away from one another, they will be highly atracted and probly
orbit each other once a second or so. But now lets try to put the earth and moon one half mile away from each other, they orbit each other much much slower then the two black holes, its becuase the gigantic mass of the black holes overwalms the closser distance between earth and the moon
Have a great day,
enjoy life.
This is a uniform rectilinear motion (MRU) exercise.
To start solving this exercise, we obtain the following data:
<h3><u>DATA:</u></h3>
- V = 3.8 m/s
- D = ¿?
- T = 15 sec
To calculate the distance, multiply the speed by the time.
We apply the following formula: d = v * t
We clear our data in the formula:


The baseball in 15 seconds will roll a distance of 57 meters.
<h2>{ Pisces04 }</h2>
Bromine has 7 electrons in their valence shell.......