If you, for example, poured it onto a wide cup with a volume equal to the total volume of the sand particles, the sand would not spread out to fill the container but would bunch up together in the middle.
Answer:
t = 4.08 s
R = 40.8 m
Explanation:
The question is asking us to solve for the time of flight and the range of the rock.
Let's start by finding the total time it takes for the rock to land on the ground. We can use this constant acceleration kinematic equation to solve for the displacement in the y-direction:
We have these known variables:
- (v_0)_y = 0 m/s
- a_y = -9.8 m/s²
- Δx_y = -20 m
And we are trying to solve for t (time). Therefore, we can plug these values into the equation and solve for t.
- -20 = 0t + 1/2(-9.8)t²
- -20 = 1/2(-9.8)t²
- -20 = -4.9t²
- t = 4.08 sec
The time it takes for the rock to reach the ground is 4.08 seconds.
Now we can use this time in order to solve for the displacement in the x-direction. We will be using the same equation, but this time it will be in terms of the x-direction.
List out known variables:
- v_0 = 10 m/s
- t = 4.08 s
- a_x = 0 m/s
We are trying to solve for:
By using the same equation, we can plug these known values into it and solve for Δx.
- Δx = 10 * 4.08 + 1/2(0)(4.08)²
- Δx = 10 * 4.08
- Δx = 40.8 m
The rock lands 40.8 m from the base of the cliff.
Answer:
E1 = 2996.667N/C E2 = 11237.5N/C
Explanation:
E1 = kQ1/r^2
=8.99 x 10^9 x 30 x 10^-9/(30x10^-2)^2
= 2996.667N/C
E2 = kQ2/r^2
= 8.99 x 10^9 x 50 x 10^-9/(20x10^-2)^2
= 11237.5N/C
The direction are towards the point a
Answer:
His average speed was 10.3199 m/s.
Explanation:
a) 0.94 m
The work done by the snow to decelerate the paratrooper is equal to the change in kinetic energy of the man:

where:
is the force applied by the snow
d is the displacement of the man in the snow, so it is the depth of the snow that stopped him
m = 68 kg is the man's mass
v = 0 is the final speed of the man
u = 55 m/s is the initial speed of the man (when it touches the ground)
and where the negative sign in the work is due to the fact that the force exerted by the snow on the man (upward) is opposite to the displacement of the man (downward)
Solving the equation for d, we find:

b) -3740 kg m/s
The magnitude of the impulse exerted by the snow on the man is equal to the variation of momentum of the man:

where
m = 68 kg is the mass of the man
is the change in velocity of the man
Substituting,
